mirror of
https://github.com/opencv/opencv.git
synced 2026-01-18 17:21:42 +01:00
Merge pull request #21407 from sensyn-robotics:feature/weighted_hough
Feature: weighted Hough Transform #21407 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV - [x] The PR is proposed to proper branch - [x] There is reference to original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
@@ -15,22 +15,27 @@ using namespace std;
|
||||
/// Global variables
|
||||
|
||||
/** General variables */
|
||||
Mat src, edges;
|
||||
Mat src, canny_edge, sobel_edge;
|
||||
Mat src_gray;
|
||||
Mat standard_hough, probabilistic_hough;
|
||||
Mat standard_hough, probabilistic_hough, weighted_hough;
|
||||
int min_threshold = 50;
|
||||
int max_trackbar = 150;
|
||||
int weightedhough_max_trackbar = 100000;
|
||||
|
||||
const char* standard_name = "Standard Hough Lines Demo";
|
||||
const char* probabilistic_name = "Probabilistic Hough Lines Demo";
|
||||
const char* weighted_name = "Weighted Hough Lines Demo";
|
||||
|
||||
int s_trackbar = max_trackbar;
|
||||
int p_trackbar = max_trackbar;
|
||||
int e_trackbar = 60;
|
||||
int w_trackbar = 60000;
|
||||
|
||||
/// Function Headers
|
||||
void help();
|
||||
void Standard_Hough( int, void* );
|
||||
void Probabilistic_Hough( int, void* );
|
||||
void Weighted_Hough( int, void* );
|
||||
|
||||
/**
|
||||
* @function main
|
||||
@@ -53,22 +58,29 @@ int main( int argc, char** argv )
|
||||
/// Pass the image to gray
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
|
||||
/// Apply Canny edge detector
|
||||
Canny( src_gray, edges, 50, 200, 3 );
|
||||
/// Apply Canny/Sobel edge detector
|
||||
Canny( src_gray, canny_edge, 50, 200, 3 );
|
||||
Sobel( src_gray, sobel_edge, CV_16S, 1, 0 ); // dx(order of the derivative x)=1,dy=0
|
||||
|
||||
/// Create Trackbars for Thresholds
|
||||
char thresh_label[50];
|
||||
snprintf( thresh_label, sizeof(thresh_label), "Thres: %d + input", min_threshold );
|
||||
|
||||
namedWindow( standard_name, WINDOW_AUTOSIZE );
|
||||
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough);
|
||||
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough );
|
||||
|
||||
namedWindow( probabilistic_name, WINDOW_AUTOSIZE );
|
||||
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough);
|
||||
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough );
|
||||
|
||||
char edge_thresh_label[50];
|
||||
sprintf( edge_thresh_label, "Edge Thres: input" );
|
||||
namedWindow( weighted_name, WINDOW_AUTOSIZE);
|
||||
createTrackbar( edge_thresh_label, weighted_name, &e_trackbar, max_trackbar, Weighted_Hough);
|
||||
createTrackbar( thresh_label, weighted_name, &w_trackbar, weightedhough_max_trackbar, Weighted_Hough);
|
||||
|
||||
/// Initialize
|
||||
Standard_Hough(0, 0);
|
||||
Probabilistic_Hough(0, 0);
|
||||
Weighted_Hough(0, 0);
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
@@ -90,10 +102,10 @@ void help()
|
||||
void Standard_Hough( int, void* )
|
||||
{
|
||||
vector<Vec2f> s_lines;
|
||||
cvtColor( edges, standard_hough, COLOR_GRAY2BGR );
|
||||
cvtColor( canny_edge, standard_hough, COLOR_GRAY2BGR );
|
||||
|
||||
/// 1. Use Standard Hough Transform
|
||||
HoughLines( edges, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
|
||||
HoughLines( canny_edge, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < s_lines.size(); i++ )
|
||||
@@ -117,10 +129,10 @@ void Standard_Hough( int, void* )
|
||||
void Probabilistic_Hough( int, void* )
|
||||
{
|
||||
vector<Vec4i> p_lines;
|
||||
cvtColor( edges, probabilistic_hough, COLOR_GRAY2BGR );
|
||||
cvtColor( canny_edge, probabilistic_hough, COLOR_GRAY2BGR );
|
||||
|
||||
/// 2. Use Probabilistic Hough Transform
|
||||
HoughLinesP( edges, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
|
||||
HoughLinesP( canny_edge, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < p_lines.size(); i++ )
|
||||
@@ -131,3 +143,38 @@ void Probabilistic_Hough( int, void* )
|
||||
|
||||
imshow( probabilistic_name, probabilistic_hough );
|
||||
}
|
||||
|
||||
/**
|
||||
* @function Weighted_Hough
|
||||
* This can detect lines based on the edge intensities.
|
||||
*/
|
||||
void Weighted_Hough( int, void* )
|
||||
{
|
||||
vector<Vec2f> s_lines;
|
||||
|
||||
/// prepare
|
||||
Mat edge_img;
|
||||
convertScaleAbs(sobel_edge, edge_img );
|
||||
// use same threshold for edge with Hough.
|
||||
threshold( edge_img, edge_img, e_trackbar, 255, cv::THRESH_TOZERO);
|
||||
cvtColor( edge_img, weighted_hough, COLOR_GRAY2BGR );
|
||||
|
||||
/// 3. Use Weighted Hough Transform
|
||||
const bool use_edgeval{true};
|
||||
HoughLines( edge_img, s_lines, 1, CV_PI/180, min_threshold + w_trackbar, 0, 0, 0, CV_PI, use_edgeval);
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < s_lines.size(); i++ )
|
||||
{
|
||||
float r = s_lines[i][0], t = s_lines[i][1];
|
||||
double cos_t = cos(t), sin_t = sin(t);
|
||||
double x0 = r*cos_t, y0 = r*sin_t;
|
||||
double alpha = 1000;
|
||||
|
||||
Point pt1( cvRound(x0 + alpha*(-sin_t)), cvRound(y0 + alpha*cos_t) );
|
||||
Point pt2( cvRound(x0 - alpha*(-sin_t)), cvRound(y0 - alpha*cos_t) );
|
||||
line( weighted_hough, pt1, pt2, Scalar(255,0,0), 3, LINE_AA );
|
||||
}
|
||||
|
||||
imshow( weighted_name, weighted_hough );
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user