mirror of
https://github.com/opencv/opencv.git
synced 2026-01-18 17:21:42 +01:00
Merge pull request #27460 from fcmiron:gapi_set_workloadtype_dynamically
G-API: Add support to set workload type dynamically in both OpenVINO and ONNX OVEP #27460 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
@@ -20,6 +20,7 @@
|
||||
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
|
||||
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
|
||||
#include <opencv2/gapi/infer.hpp> // Generic
|
||||
#include <opencv2/gapi/infer/workload_type.hpp>
|
||||
|
||||
namespace cv {
|
||||
namespace gapi {
|
||||
@@ -752,8 +753,16 @@ protected:
|
||||
std::string m_tag;
|
||||
};
|
||||
|
||||
class WorkloadTypeONNX : public WorkloadType {};
|
||||
using WorkloadTypeONNXPtr = std::shared_ptr<cv::gapi::onnx::WorkloadTypeONNX>;
|
||||
|
||||
} // namespace onnx
|
||||
} // namespace gapi
|
||||
namespace detail {
|
||||
template<> struct CompileArgTag<cv::gapi::onnx::WorkloadTypeONNXPtr> {
|
||||
static const char* tag() { return "gapi.onnx.workload_type"; }
|
||||
};
|
||||
} // namespace detail
|
||||
} // namespace cv
|
||||
|
||||
#endif // OPENCV_GAPI_INFER_HPP
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
|
||||
#include <opencv2/gapi/gkernel.hpp> // GKernelType[M], GBackend
|
||||
#include <opencv2/gapi/infer.hpp> // Generic
|
||||
#include <opencv2/gapi/infer/workload_type.hpp>
|
||||
|
||||
#include <map>
|
||||
|
||||
@@ -745,6 +746,9 @@ namespace wip { namespace ov {
|
||||
*/
|
||||
struct benchmark_mode { };
|
||||
|
||||
class WorkloadTypeOV : public WorkloadType {};
|
||||
using WorkloadTypeOVPtr = std::shared_ptr<cv::gapi::wip::ov::WorkloadTypeOV>;
|
||||
|
||||
} // namespace ov
|
||||
} // namespace wip
|
||||
|
||||
@@ -756,6 +760,10 @@ namespace detail
|
||||
{
|
||||
static const char* tag() { return "gapi.wip.ov.benchmark_mode"; }
|
||||
};
|
||||
template<> struct CompileArgTag<cv::gapi::wip::ov::WorkloadTypeOVPtr>
|
||||
{
|
||||
static const char* tag() { return "gapi.wip.ov.workload_type"; }
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace cv
|
||||
|
||||
58
modules/gapi/include/opencv2/gapi/infer/workload_type.hpp
Normal file
58
modules/gapi/include/opencv2/gapi/infer/workload_type.hpp
Normal file
@@ -0,0 +1,58 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2025 Intel Corporation
|
||||
|
||||
#ifndef OPENCV_WORKLOADTYPE_HPP
|
||||
#define OPENCV_WORKLOADTYPE_HPP
|
||||
|
||||
#include <string>
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
using Callback = std::function<void(const std::string &type)>;
|
||||
|
||||
class WorkloadListener {
|
||||
Callback callback;
|
||||
public:
|
||||
uint64_t id;
|
||||
WorkloadListener(const Callback &cb, uint64_t listener_id) : callback(cb), id(listener_id) {}
|
||||
|
||||
void operator()(const std::string &type) const {
|
||||
if (callback) {
|
||||
callback(type);
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const WorkloadListener& other) const {
|
||||
return id == other.id;
|
||||
}
|
||||
};
|
||||
class WorkloadType {
|
||||
std::vector<WorkloadListener> listeners;
|
||||
uint64_t nextId = 1;
|
||||
public:
|
||||
uint64_t addListener(const Callback &cb) {
|
||||
uint64_t id = nextId++;
|
||||
listeners.emplace_back(cb, id);
|
||||
return id;
|
||||
}
|
||||
|
||||
void removeListener(uint64_t id) {
|
||||
auto it = std::remove_if(listeners.begin(), listeners.end(),
|
||||
[id](const WorkloadListener& entry) { return entry.id == id; });
|
||||
if (it != listeners.end()) {
|
||||
listeners.erase(it, listeners.end());
|
||||
}
|
||||
}
|
||||
|
||||
void notify(const std::string &type) {
|
||||
for (const auto &listener : listeners) {
|
||||
listener(type);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif // OPENCV_WORKLOADTYPE_HPP
|
||||
@@ -126,8 +126,14 @@ class ONNXCompiled {
|
||||
std::vector<cv::Mat>& outs);
|
||||
|
||||
std::vector<std::string> in_names_without_const;
|
||||
|
||||
cv::gapi::onnx::WorkloadTypeONNXPtr m_workload_type;
|
||||
uint64_t m_workload_listener_id = 0;
|
||||
void setWorkloadType(const std::string &type);
|
||||
public:
|
||||
explicit ONNXCompiled(const gapi::onnx::detail::ParamDesc &pp);
|
||||
~ONNXCompiled();
|
||||
void listenToWorkloadType(cv::gapi::onnx::WorkloadTypeONNXPtr workload);
|
||||
|
||||
// Extract the information about output layer #i
|
||||
cv::GMatDesc outMeta(int i) const;
|
||||
@@ -577,8 +583,10 @@ using GConstGONNXModel = ade::ConstTypedGraph
|
||||
} // anonymous namespace
|
||||
|
||||
// GCPUExcecutable implementation //////////////////////////////////////////////
|
||||
cv::gimpl::onnx::GONNXExecutable::GONNXExecutable(const ade::Graph &g,
|
||||
const std::vector<ade::NodeHandle> &nodes)
|
||||
cv::gimpl::onnx::GONNXExecutable::GONNXExecutable(const ade::Graph &g,
|
||||
const std::vector<ade::NodeHandle> &nodes,
|
||||
const cv::GCompileArgs &compileArgs)
|
||||
|
||||
: m_g(g), m_gm(m_g) {
|
||||
// FIXME: Currently this backend is capable to run a single inference node only.
|
||||
// Need to extend our island fusion with merge/not-to-merge decision making parametrization
|
||||
@@ -589,6 +597,11 @@ cv::gimpl::onnx::GONNXExecutable::GONNXExecutable(const ade::Graph &g,
|
||||
case NodeType::OP:
|
||||
if (this_nh == nullptr) {
|
||||
this_nh = nh;
|
||||
auto workload_arg = cv::gapi::getCompileArg<cv::gapi::onnx::WorkloadTypeONNXPtr>(compileArgs);
|
||||
if(workload_arg.has_value()) {
|
||||
const auto &onnx_unit = iem.metadata(nh).get<ONNXUnit>();
|
||||
onnx_unit.oc->listenToWorkloadType(workload_arg.value());
|
||||
}
|
||||
}
|
||||
else {
|
||||
util::throw_error(std::logic_error("Multi-node inference is not supported!"));
|
||||
@@ -834,6 +847,23 @@ ONNXCompiled::ONNXCompiled(const gapi::onnx::detail::ParamDesc &pp)
|
||||
out_data.resize(params.num_out);
|
||||
}
|
||||
|
||||
ONNXCompiled::~ONNXCompiled() {
|
||||
if (m_workload_type) {
|
||||
m_workload_type->removeListener(m_workload_listener_id);
|
||||
}
|
||||
}
|
||||
|
||||
void ONNXCompiled::setWorkloadType(const std::string &type) {
|
||||
const char* keys[] = {"ep.dynamic.workload_type"};
|
||||
const char* values[] = {type.c_str()};
|
||||
this_session.SetEpDynamicOptions(keys, values, 1);
|
||||
}
|
||||
|
||||
void ONNXCompiled::listenToWorkloadType(cv::gapi::onnx::WorkloadTypeONNXPtr workload) {
|
||||
m_workload_type = workload;
|
||||
m_workload_listener_id = m_workload_type->addListener(std::bind(&ONNXCompiled::setWorkloadType, this, std::placeholders::_1));
|
||||
}
|
||||
|
||||
std::vector<TensorInfo> ONNXCompiled::getTensorInfo(TensorPosition pos) {
|
||||
GAPI_Assert(pos == INPUT || pos == OUTPUT);
|
||||
|
||||
@@ -1348,9 +1378,9 @@ namespace {
|
||||
}
|
||||
|
||||
virtual EPtr compile(const ade::Graph &graph,
|
||||
const cv::GCompileArgs &,
|
||||
const cv::GCompileArgs &compileArgs,
|
||||
const std::vector<ade::NodeHandle> &nodes) const override {
|
||||
return EPtr{new cv::gimpl::onnx::GONNXExecutable(graph, nodes)};
|
||||
return EPtr{new cv::gimpl::onnx::GONNXExecutable(graph, nodes, compileArgs)};
|
||||
}
|
||||
|
||||
virtual cv::GKernelPackage auxiliaryKernels() const override {
|
||||
|
||||
@@ -39,7 +39,8 @@ class GONNXExecutable final: public GIslandExecutable
|
||||
|
||||
public:
|
||||
GONNXExecutable(const ade::Graph &graph,
|
||||
const std::vector<ade::NodeHandle> &nodes);
|
||||
const std::vector<ade::NodeHandle> &nodes,
|
||||
const cv::GCompileArgs &compileArgs);
|
||||
|
||||
virtual inline bool canReshape() const override { return false; }
|
||||
virtual inline void reshape(ade::Graph&, const GCompileArgs&) override {
|
||||
|
||||
@@ -1599,7 +1599,16 @@ cv::gimpl::ov::GOVExecutable::GOVExecutable(const ade::Graph &g,
|
||||
const cv::GCompileArgs &compileArgs,
|
||||
const std::vector<ade::NodeHandle> &nodes)
|
||||
: m_g(g), m_gm(m_g) {
|
||||
auto workload_arg = cv::gapi::getCompileArg<cv::gapi::wip::ov::WorkloadTypeOVPtr>(compileArgs);
|
||||
if(workload_arg.has_value()) {
|
||||
#if INF_ENGINE_RELEASE >= 2024030000
|
||||
m_workload_type = workload_arg.value();
|
||||
m_workload_listener_id = m_workload_type->addListener(std::bind(&GOVExecutable::setWorkloadType, this, std::placeholders::_1));
|
||||
#else
|
||||
util::throw_error(std::logic_error("Workload type not supported in this version of OpenVINO, use >= 2024.3.0"));
|
||||
#endif
|
||||
|
||||
}
|
||||
m_options.inference_only =
|
||||
cv::gapi::getCompileArg<cv::gapi::wip::ov::benchmark_mode>(compileArgs).has_value();
|
||||
// FIXME: Currently this backend is capable to run a single inference node only.
|
||||
@@ -1636,6 +1645,25 @@ cv::gimpl::ov::GOVExecutable::GOVExecutable(const ade::Graph &g,
|
||||
}
|
||||
}
|
||||
|
||||
#if INF_ENGINE_RELEASE >= 2024030000
|
||||
cv::gimpl::ov::GOVExecutable::~GOVExecutable() {
|
||||
if (m_workload_type)
|
||||
m_workload_type->removeListener(m_workload_listener_id);
|
||||
}
|
||||
|
||||
void cv::gimpl::ov::GOVExecutable::setWorkloadType(const std::string &type) {
|
||||
if (type == "Default") {
|
||||
compiled.compiled_model.set_property({{"WORKLOAD_TYPE", ::ov::WorkloadType::DEFAULT}});
|
||||
}
|
||||
else if (type == "Efficient") {
|
||||
compiled.compiled_model.set_property({{"WORKLOAD_TYPE", ::ov::WorkloadType::EFFICIENT}});
|
||||
}
|
||||
else {
|
||||
GAPI_LOG_WARNING(NULL, "Unknown value for WORKLOAD_TYPE");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void cv::gimpl::ov::GOVExecutable::run(cv::gimpl::GIslandExecutable::IInput &in,
|
||||
cv::gimpl::GIslandExecutable::IOutput &out) {
|
||||
std::vector<InObj> input_objs;
|
||||
|
||||
@@ -50,12 +50,18 @@ class GOVExecutable final: public GIslandExecutable
|
||||
|
||||
// To manage additional execution options
|
||||
Options m_options;
|
||||
|
||||
#if INF_ENGINE_RELEASE >= 2024030000
|
||||
cv::gapi::wip::ov::WorkloadTypeOVPtr m_workload_type;
|
||||
uint64_t m_workload_listener_id = 0;
|
||||
void setWorkloadType(const std::string &type);
|
||||
#endif
|
||||
public:
|
||||
GOVExecutable(const ade::Graph &graph,
|
||||
const cv::GCompileArgs &compileArgs,
|
||||
const std::vector<ade::NodeHandle> &nodes);
|
||||
|
||||
#if INF_ENGINE_RELEASE >= 2024030000
|
||||
~GOVExecutable();
|
||||
#endif
|
||||
virtual inline bool canReshape() const override { return false; }
|
||||
virtual inline void reshape(ade::Graph&, const GCompileArgs&) override {
|
||||
GAPI_Error("InternalError"); // Not implemented yet
|
||||
|
||||
Reference in New Issue
Block a user