Files
nanoflann/examples/pointcloud_custom_resultset.cpp
2025-12-22 17:16:23 +01:00

124 lines
4.0 KiB
C++

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2011-2025 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <nanoflann.hpp>
#include <type_traits>
#include "utils.h"
using num_t = double;
template <typename _DistanceType, typename _IndexType = size_t>
class MyCustomResultSet
{
public:
using DistanceType = _DistanceType;
using IndexType = _IndexType;
public:
const DistanceType radius;
std::vector<nanoflann::ResultItem<IndexType, DistanceType>>& m_indices_dists;
explicit MyCustomResultSet(
DistanceType radius_,
std::vector<nanoflann::ResultItem<IndexType, DistanceType>>& indices_dists)
: radius(radius_), m_indices_dists(indices_dists)
{
init();
}
void init() { clear(); }
void clear() { m_indices_dists.clear(); }
size_t size() const { return m_indices_dists.size(); }
size_t empty() const { return m_indices_dists.empty(); }
bool full() const { return true; }
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are
* sufficient
*/
bool addPoint(DistanceType dist, IndexType index)
{
printf("addPoint() called: dist=%f index=%u\n", dist, static_cast<unsigned int>(index));
if (dist < radius) m_indices_dists.emplace_back(index, dist);
return true;
}
DistanceType worstDist() const { return radius; }
void sort()
{
std::sort(m_indices_dists.begin(), m_indices_dists.end(), nanoflann::IndexDist_Sorter());
}
};
void kdtree_demo(const size_t N)
{
PointCloud<num_t> cloud;
// Generate points:
generateRandomPointCloud(cloud, N);
num_t query_pt[3] = {0.5, 0.5, 0.5};
// construct a kd-tree index:
using my_kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor<
nanoflann::L2_Simple_Adaptor<num_t, PointCloud<num_t>>, PointCloud<num_t>, 3 /* dim */
>;
my_kd_tree_t index(3 /*dim*/, cloud, {10 /* max leaf */});
{
// radius search:
const num_t squaredRadius = 1;
std::vector<nanoflann::ResultItem<size_t, num_t>> indices_dists;
MyCustomResultSet<num_t, size_t> resultSet(squaredRadius, indices_dists);
index.findNeighbors(resultSet, query_pt);
std::cout << "Found: " << indices_dists.size() << " NN points." << std::endl;
}
}
int main()
{
// Randomize Seed
srand(static_cast<unsigned int>(time(nullptr)));
kdtree_demo(10000);
return 0;
}