mirror of
https://github.com/jlblancoc/nanoflann.git
synced 2026-01-16 21:01:17 +01:00
132 lines
5.6 KiB
C++
132 lines
5.6 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com).
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <nanoflann.hpp>
|
|
#include <vector>
|
|
|
|
// ===== This example shows how to use nanoflann with these types of containers:
|
|
// using my_vector_of_vectors_t = std::vector<std::vector<double> > ;
|
|
//
|
|
// The next one requires #include <Eigen/Dense>
|
|
// using my_vector_of_vectors_t = std::vector<Eigen::VectorXd> ;
|
|
// =============================================================================
|
|
|
|
/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the
|
|
* storage. The i'th vector represents a point in the state space.
|
|
*
|
|
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality
|
|
* for the points in the data set, allowing more compiler optimizations.
|
|
* \tparam num_t The type of the point coordinates (typ. double or float).
|
|
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
|
|
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
|
|
* \tparam IndexType The type for indices in the KD-tree index
|
|
* (typically, size_t of int)
|
|
*/
|
|
template <
|
|
class VectorOfVectorsType, typename num_t = double, int DIM = -1,
|
|
class Distance = nanoflann::metric_L2, typename IndexType = size_t>
|
|
struct KDTreeVectorOfVectorsAdaptor
|
|
{
|
|
using self_t =
|
|
KDTreeVectorOfVectorsAdaptor<VectorOfVectorsType, num_t, DIM, Distance, IndexType>;
|
|
using metric_t = typename Distance::template traits<num_t, self_t>::distance_t;
|
|
using index_t = nanoflann::KDTreeSingleIndexAdaptor<metric_t, self_t, DIM, IndexType>;
|
|
|
|
/** The kd-tree index for the user to call its methods as usual with any
|
|
* other FLANN index */
|
|
index_t* index = nullptr;
|
|
|
|
/// Constructor: takes a const ref to the vector of vectors object with the
|
|
/// data points
|
|
KDTreeVectorOfVectorsAdaptor(
|
|
const size_t /* dimensionality */, const VectorOfVectorsType& mat,
|
|
const int leaf_max_size = 10, const unsigned int n_thread_build = 1)
|
|
: m_data(mat)
|
|
{
|
|
assert(mat.size() != 0 && mat[0].size() != 0);
|
|
const size_t dims = mat[0].size();
|
|
if (DIM > 0 && static_cast<int>(dims) != DIM)
|
|
throw std::runtime_error(
|
|
"Data set dimensionality does not match the 'DIM' template "
|
|
"argument");
|
|
index = new index_t(
|
|
static_cast<int>(dims), *this /* adaptor */,
|
|
nanoflann::KDTreeSingleIndexAdaptorParams(
|
|
leaf_max_size, nanoflann::KDTreeSingleIndexAdaptorFlags::None, n_thread_build));
|
|
}
|
|
|
|
~KDTreeVectorOfVectorsAdaptor() { delete index; }
|
|
|
|
const VectorOfVectorsType& m_data;
|
|
|
|
/** Query for the \a num_closest closest points to a given point
|
|
* (entered as query_point[0:dim-1]).
|
|
* Note that this is a short-cut method for index->findNeighbors().
|
|
* The user can also call index->... methods as desired.
|
|
*/
|
|
inline void query(
|
|
const num_t* query_point, const size_t num_closest, IndexType* out_indices,
|
|
num_t* out_distances_sq) const
|
|
{
|
|
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
|
|
resultSet.init(out_indices, out_distances_sq);
|
|
index->findNeighbors(resultSet, query_point);
|
|
}
|
|
|
|
/** @name Interface expected by KDTreeSingleIndexAdaptor
|
|
* @{ */
|
|
|
|
const self_t& derived() const { return *this; }
|
|
self_t& derived() { return *this; }
|
|
|
|
// Must return the number of data points
|
|
inline size_t kdtree_get_point_count() const { return m_data.size(); }
|
|
|
|
// Returns the dim'th component of the idx'th point in the class:
|
|
inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const
|
|
{
|
|
return m_data[idx][dim];
|
|
}
|
|
|
|
// Optional bounding-box computation: return false to default to a standard
|
|
// bbox computation loop.
|
|
// Return true if the BBOX was already computed by the class and returned
|
|
// in "bb" so it can be avoided to redo it again. Look at bb.size() to
|
|
// find out the expected dimensionality (e.g. 2 or 3 for point clouds)
|
|
template <class BBOX>
|
|
bool kdtree_get_bbox(BBOX& /*bb*/) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/** @} */
|
|
|
|
}; // end of KDTreeVectorOfVectorsAdaptor
|