mirror of
https://gitlab.com/libeigen/eigen.git
synced 2026-01-18 17:31:19 +01:00
Merge branch eigen:master into master
This commit is contained in:
@@ -1,42 +1,37 @@
|
||||
<!--
|
||||
Please read this!
|
||||
Thank you for submitting an issue!
|
||||
|
||||
Before opening a new issue, make sure to search for keywords in the issues
|
||||
filtered by "bug::confirmed" or "bug::unconfirmed" and "bugzilla" label:
|
||||
|
||||
- https://gitlab.com/libeigen/eigen/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=bug%3A%3Aconfirmed
|
||||
- https://gitlab.com/libeigen/eigen/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=bug%3A%3Aunconfirmed
|
||||
- https://gitlab.com/libeigen/eigen/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=bugzilla
|
||||
|
||||
and verify the issue you're about to submit isn't a duplicate. -->
|
||||
Before opening a new issue, please search for keywords in the existing [list of issues](https://gitlab.com/libeigen/eigen/-/issues?state=opened) to verify it isn't a duplicate.
|
||||
-->
|
||||
|
||||
### Summary
|
||||
<!-- Summarize the bug encountered concisely. -->
|
||||
|
||||
### Environment
|
||||
<!-- Please provide your development environment here -->
|
||||
<!-- Please provide your development environment. -->
|
||||
- **Operating System** : Windows/Linux
|
||||
- **Architecture** : x64/Arm64/PowerPC ...
|
||||
- **Eigen Version** : 3.3.9
|
||||
- **Compiler Version** : Gcc7.0
|
||||
- **Eigen Version** : 5.0.0
|
||||
- **Compiler Version** : gcc-12.0
|
||||
- **Compile Flags** : -O3 -march=native
|
||||
- **Vector Extension** : SSE/AVX/NEON ...
|
||||
|
||||
### Minimal Example
|
||||
<!-- If possible, please create a minimal example here that exhibits the problematic behavior.
|
||||
You can also link to [godbolt](https://godbolt.org). But please note that you need to click
|
||||
the "Share" button in the top right-hand corner of the godbolt page where you reproduce the sample
|
||||
code to get the share link instead of in your browser address bar.
|
||||
<!--
|
||||
Please create a minimal reproducing example here that exhibits the problematic behavior.
|
||||
The example should be complete, in that it can fully build and run. See the [the guidelines on stackoverflow](https://stackoverflow.com/help/minimal-reproducible-example) for how to create a good minimal example.
|
||||
|
||||
You can read [the guidelines on stackoverflow](https://stackoverflow.com/help/minimal-reproducible-example)
|
||||
on how to create a good minimal example. -->
|
||||
You can also link to [godbolt](https://godbolt.org). Note that you need to click
|
||||
the "Share" button in the top right-hand corner of the godbolt page to get the share link
|
||||
instead of the URL in your browser address bar.
|
||||
-->
|
||||
|
||||
```cpp
|
||||
//show your code here
|
||||
// Insert your code here.
|
||||
```
|
||||
|
||||
### Steps to reproduce
|
||||
<!-- Describe how one can reproduce the issue - this is very important. Please use an ordered list. -->
|
||||
### Steps to reproduce the issue
|
||||
<!-- Describe the necessary steps to reproduce the issue. -->
|
||||
|
||||
1. first step
|
||||
2. second step
|
||||
@@ -49,21 +44,16 @@ on how to create a good minimal example. -->
|
||||
<!-- Describe what you should see instead. -->
|
||||
|
||||
### Relevant logs
|
||||
<!-- Add relevant code snippets or program output within blocks marked by " ``` " -->
|
||||
<!-- Add relevant build logs or program output within blocks marked by " ``` " -->
|
||||
|
||||
<!-- OPTIONAL: remove this section if you are not reporting a compilation warning issue.-->
|
||||
### Warning Messages
|
||||
<!-- Show us the warning messages you got! -->
|
||||
|
||||
<!-- OPTIONAL: remove this section if you are not reporting a performance issue. -->
|
||||
### Benchmark scripts and results
|
||||
### [Optional] Benchmark scripts and results
|
||||
<!-- Please share any benchmark scripts - either standalone, or using [Google Benchmark](https://github.com/google/benchmark). -->
|
||||
|
||||
### Anything else that might help
|
||||
<!-- It will be better to provide us more information to help narrow down the cause.
|
||||
<!--
|
||||
It will be better to provide us more information to help narrow down the cause.
|
||||
Including but not limited to the following:
|
||||
- lines of code that might help us diagnose the problem.
|
||||
- potential ways to address the issue.
|
||||
- last known working/first broken version (release number or commit hash). -->
|
||||
|
||||
- [ ] Have a plan to fix this issue.
|
||||
- last known working/first broken version (release number or commit hash).
|
||||
-->
|
||||
|
||||
@@ -1,6 +1,13 @@
|
||||
<!--
|
||||
Thank you for submitting a Feature Request!
|
||||
|
||||
If you want to run ideas by the maintainers and the Eigen community first,
|
||||
you can chat about them on the [Eigen Discord server](https://discord.gg/2SkEJGqZjR).
|
||||
-->
|
||||
|
||||
### Describe the feature you would like to be implemented.
|
||||
|
||||
### Would such a feature be useful for other users? Why?
|
||||
### Why Would such a feature be useful for other users?
|
||||
|
||||
### Any hints on how to implement the requested feature?
|
||||
|
||||
|
||||
@@ -1,26 +0,0 @@
|
||||
<!--
|
||||
Thanks for contributing a merge request! Please name and fully describe your MR as you would for a commit message.
|
||||
If the MR fixes an issue, please include "Fixes #issue" in the commit message and the MR description.
|
||||
|
||||
In addition, we recommend that first-time contributors read our [contribution guidelines](https://eigen.tuxfamily.org/index.php?title=Contributing_to_Eigen) and [git page](https://eigen.tuxfamily.org/index.php?title=Git), which will help you submit a more standardized MR.
|
||||
|
||||
Before submitting the MR, you also need to complete the following checks:
|
||||
- Make one PR per feature/bugfix (don't mix multiple changes into one PR). Avoid committing unrelated changes.
|
||||
- Rebase before committing
|
||||
- For code changes, run the test suite (at least the tests that are likely affected by the change).
|
||||
See our [test guidelines](https://eigen.tuxfamily.org/index.php?title=Tests).
|
||||
- If possible, add a test (both for bug-fixes as well as new features)
|
||||
- Make sure new features are documented
|
||||
|
||||
Note that we are a team of volunteers; we appreciate your patience during the review process.
|
||||
|
||||
Again, thanks for contributing! -->
|
||||
|
||||
### Reference issue
|
||||
<!-- You can link to a specific issue using the gitlab syntax #<issue number> -->
|
||||
|
||||
### What does this implement/fix?
|
||||
<!--Please explain your changes.-->
|
||||
|
||||
### Additional information
|
||||
<!--Any additional information you think is important.-->
|
||||
30
.gitlab/merge_request_templates/Merge Request.md
Normal file
30
.gitlab/merge_request_templates/Merge Request.md
Normal file
@@ -0,0 +1,30 @@
|
||||
<!--
|
||||
Thanks for contributing a merge request!
|
||||
|
||||
We recommend that first-time contributors read our [contribution guidelines](https://eigen.tuxfamily.org/index.php?title=Contributing_to_Eigen).
|
||||
|
||||
Before submitting the MR, please complete the following checks:
|
||||
- Create one PR per feature or bugfix,
|
||||
- Run the test suite to verify your changes.
|
||||
See our [test guidelines](https://eigen.tuxfamily.org/index.php?title=Tests).
|
||||
- Add tests to cover the bug addressed or any new feature.
|
||||
- Document new features. If it is a substantial change, add it to the [Changelog](https://gitlab.com/libeigen/eigen/-/blob/master/CHANGELOG.md).
|
||||
- Leave the following box checked when submitting: `Allow commits from members who can merge to the target branch`.
|
||||
This allows us to rebase and merge your change.
|
||||
|
||||
Note that we are a team of volunteers; we appreciate your patience during the review process.
|
||||
-->
|
||||
|
||||
### Description
|
||||
<!--Please explain your changes.-->
|
||||
|
||||
%{first_multiline_commit}
|
||||
|
||||
### Reference issue
|
||||
<!--
|
||||
You can link to a specific issue using the gitlab syntax #<issue number>.
|
||||
If the MR fixes an issue, write "Fixes #<issue number>" to have the issue automatically closed on merge.
|
||||
-->
|
||||
|
||||
### Additional information
|
||||
<!--Any additional information you think is important.-->
|
||||
@@ -44,6 +44,7 @@
|
||||
#include "src/Eigenvalues/ComplexSchur.h"
|
||||
#include "src/Eigenvalues/ComplexEigenSolver.h"
|
||||
#include "src/Eigenvalues/RealQZ.h"
|
||||
#include "src/Eigenvalues/ComplexQZ.h"
|
||||
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
|
||||
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
|
||||
@@ -17,6 +17,9 @@
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_REAL& x, const PACKET_CPLX& y, const PACKET_CPLX& c) const { \
|
||||
return padd(c, this->pmul(x, y)); \
|
||||
} \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmsub(const PACKET_REAL& x, const PACKET_CPLX& y, const PACKET_CPLX& c) const { \
|
||||
return psub(this->pmul(x, y), c); \
|
||||
} \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_REAL& x, const PACKET_CPLX& y) const { \
|
||||
return PACKET_CPLX(Eigen::internal::pmul<PACKET_REAL>(x, y.v)); \
|
||||
} \
|
||||
@@ -27,6 +30,9 @@
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_CPLX& x, const PACKET_REAL& y, const PACKET_CPLX& c) const { \
|
||||
return padd(c, this->pmul(x, y)); \
|
||||
} \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmsub(const PACKET_CPLX& x, const PACKET_REAL& y, const PACKET_CPLX& c) const { \
|
||||
return psub(this->pmul(x, y), c); \
|
||||
} \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_CPLX& x, const PACKET_REAL& y) const { \
|
||||
return PACKET_CPLX(Eigen::internal::pmul<PACKET_REAL>(x.v, y)); \
|
||||
} \
|
||||
@@ -76,6 +82,11 @@ struct conj_helper {
|
||||
return this->pmul(x, y) + c;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType pmsub(const LhsType& x, const RhsType& y,
|
||||
const ResultType& c) const {
|
||||
return this->pmul(x, y) - c;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType pmul(const LhsType& x, const RhsType& y) const {
|
||||
return conj_if<ConjLhs>()(x) * conj_if<ConjRhs>()(y);
|
||||
}
|
||||
@@ -104,6 +115,10 @@ struct conj_helper<Packet, Packet, ConjLhs, ConjRhs> {
|
||||
return Eigen::internal::pmadd(conj_if<ConjLhs>().pconj(x), conj_if<ConjRhs>().pconj(y), c);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmsub(const Packet& x, const Packet& y, const Packet& c) const {
|
||||
return Eigen::internal::pmsub(conj_if<ConjLhs>().pconj(x), conj_if<ConjRhs>().pconj(y), c);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmul(const Packet& x, const Packet& y) const {
|
||||
return Eigen::internal::pmul(conj_if<ConjLhs>().pconj(x), conj_if<ConjRhs>().pconj(y));
|
||||
}
|
||||
@@ -116,6 +131,9 @@ struct conj_helper<Packet, Packet, true, true> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmadd(const Packet& x, const Packet& y, const Packet& c) const {
|
||||
return Eigen::internal::pmadd(pconj(x), pconj(y), c);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmsub(const Packet& x, const Packet& y, const Packet& c) const {
|
||||
return Eigen::internal::pmsub(pconj(x), pconj(y), c);
|
||||
}
|
||||
// We save a conjuation by using the identity conj(a)*conj(b) = conj(a*b).
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pmul(const Packet& x, const Packet& y) const {
|
||||
return pconj(Eigen::internal::pmul(x, y));
|
||||
|
||||
661
Eigen/src/Eigenvalues/ComplexQZ.h
Normal file
661
Eigen/src/Eigenvalues/ComplexQZ.h
Normal file
@@ -0,0 +1,661 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Alexey Korepanov
|
||||
// Copyright (C) 2025 Ludwig Striet <ludwig.striet@mathematik.uni-freiburg.de>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the
|
||||
// Mozilla Public License v. 2.0. If a copy of the MPL
|
||||
// was not distributed with this file, You can obtain one at
|
||||
// https://mozilla.org/MPL/2.0/.
|
||||
//
|
||||
// Derived from: Eigen/src/Eigenvalues/RealQZ.h
|
||||
|
||||
#include "Eigen/Core"
|
||||
#include "Eigen/Jacobi"
|
||||
|
||||
#ifndef EIGEN_COMPLEX_QZ_H_
|
||||
#define EIGEN_COMPLEX_QZ_H_
|
||||
|
||||
#include "../../SparseQR"
|
||||
|
||||
// IWYU pragma: private
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
*
|
||||
*
|
||||
* \class ComplexQZ
|
||||
*
|
||||
* \brief Performs a QZ decomposition of a pair of matrices A, B
|
||||
*
|
||||
* \tparam MatrixType_ the type input type of the matrix.
|
||||
*
|
||||
* Given to complex square matrices A and B, this class computes the QZ decomposition
|
||||
* \f$ A = Q S Z \f$, \f$ B = Q T Z\f$ where Q and Z are unitary matrices and
|
||||
* S and T a re upper-triangular matrices. More precisely, Q and Z fulfill
|
||||
* \f$ Q Q* = Id\f$ and \f$ Z Z* = Id\f$. The generalized Eigenvalues are then
|
||||
* obtained as ratios of corresponding diagonal entries, lambda(i) = S(i,i) / T(i, i).
|
||||
*
|
||||
* The QZ algorithm was introduced in the seminal work "An Algorithm for
|
||||
* Generalized Matrix Eigenvalue Problems" by Moler & Stewart in 1973. The matrix
|
||||
* pair S = A, T = B is first transformed to Hessenberg-Triangular form where S is an
|
||||
* upper Hessenberg matrix and T is an upper Triangular matrix.
|
||||
*
|
||||
* This pair is subsequently reduced to the desired form using implicit QZ shifts as
|
||||
* described in the original paper. The algorithms to find small entries on the
|
||||
* diagonals and subdiagonals are based on the variants in the implementation
|
||||
* for Real matrices in the RealQZ class.
|
||||
*
|
||||
* \sa class RealQZ
|
||||
*/
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename MatrixType_>
|
||||
class ComplexQZ {
|
||||
public:
|
||||
using MatrixType = MatrixType_;
|
||||
using Scalar = typename MatrixType_::Scalar;
|
||||
using RealScalar = typename MatrixType_::RealScalar;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = internal::traits<MatrixType>::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
using Vec = Matrix<Scalar, Dynamic, 1>;
|
||||
using Vec2 = Matrix<Scalar, 2, 1>;
|
||||
using Vec3 = Matrix<Scalar, 3, 1>;
|
||||
using Row2 = Matrix<Scalar, 1, 2>;
|
||||
using Mat2 = Matrix<Scalar, 2, 2>;
|
||||
|
||||
/** \brief Returns matrix Q in the QZ decomposition.
|
||||
*
|
||||
* \returns A const reference to the matrix Q.
|
||||
*/
|
||||
const MatrixType& matrixQ() const {
|
||||
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
|
||||
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
|
||||
return m_Q;
|
||||
}
|
||||
|
||||
/** \brief Returns matrix Z in the QZ decomposition.
|
||||
*
|
||||
* \returns A const reference to the matrix Z.
|
||||
*/
|
||||
const MatrixType& matrixZ() const {
|
||||
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
|
||||
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
|
||||
return m_Z;
|
||||
}
|
||||
|
||||
/** \brief Returns matrix S in the QZ decomposition.
|
||||
*
|
||||
* \returns A const reference to the matrix S.
|
||||
*/
|
||||
const MatrixType& matrixS() const {
|
||||
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
|
||||
return m_S;
|
||||
}
|
||||
|
||||
/** \brief Returns matrix S in the QZ decomposition.
|
||||
*
|
||||
* \returns A const reference to the matrix S.
|
||||
*/
|
||||
const MatrixType& matrixT() const {
|
||||
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
|
||||
return m_T;
|
||||
}
|
||||
|
||||
/** \brief Constructor
|
||||
*
|
||||
* \param[in] n size of the matrices whose QZ decomposition we compute
|
||||
*
|
||||
* This constructor is used when we use the compute(...) method later,
|
||||
* especially when we aim to compute the decomposition of two sparse
|
||||
* matrices.
|
||||
*/
|
||||
ComplexQZ(Index n, bool computeQZ = true, unsigned int maxIters = 400)
|
||||
: m_n(n),
|
||||
m_S(n, n),
|
||||
m_T(n, n),
|
||||
m_Q(computeQZ ? n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
|
||||
computeQZ ? n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
|
||||
m_Z(computeQZ ? n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
|
||||
computeQZ ? n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
|
||||
m_ws(2 * n),
|
||||
m_computeQZ(computeQZ),
|
||||
m_maxIters(maxIters){
|
||||
|
||||
};
|
||||
|
||||
/** \brief Constructor. computes the QZ decomposition of given matrices
|
||||
* upon creation
|
||||
*
|
||||
* \param[in] A input matrix A
|
||||
* \param[in] B input matrix B
|
||||
* \param[in] computeQZ If false, the matrices Q and Z are not computed
|
||||
*
|
||||
* This constructor calls the compute() method to compute the QZ decomposition.
|
||||
* If input matrices are sparse, call the constructor that uses only the
|
||||
* size as input the computeSparse(...) method.
|
||||
*/
|
||||
ComplexQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true, unsigned int maxIters = 400)
|
||||
: m_n(A.rows()),
|
||||
m_maxIters(maxIters),
|
||||
m_computeQZ(computeQZ),
|
||||
m_S(A.rows(), A.cols()),
|
||||
m_T(A.rows(), A.cols()),
|
||||
m_Q(computeQZ ? m_n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
|
||||
computeQZ ? m_n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
|
||||
m_Z(computeQZ ? m_n : (MatrixType::RowsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::RowsAtCompileTime),
|
||||
computeQZ ? m_n : (MatrixType::ColsAtCompileTime == Eigen::Dynamic ? 0 : MatrixType::ColsAtCompileTime)),
|
||||
m_ws(2 * m_n) {
|
||||
compute(A, B, computeQZ);
|
||||
}
|
||||
|
||||
/** \brief Compute the QZ decomposition of complex input matrices
|
||||
*
|
||||
* \param[in] A Matrix A.
|
||||
* \param[in] B Matrix B.
|
||||
* \param[in] computeQZ If false, the matrices Q and Z are not computed.
|
||||
*/
|
||||
void compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
|
||||
|
||||
/** \brief Compute the decomposition of sparse complex input matrices.
|
||||
* Main difference to the compute(...) method is that it computes a
|
||||
* SparseQR decomposition of B
|
||||
*
|
||||
* \param[in] A Matrix A.
|
||||
* \param[in] B Matrix B.
|
||||
* \param[in] computeQZ If false, the matrices Q and Z are not computed.
|
||||
*/
|
||||
template <typename SparseMatrixType_>
|
||||
void computeSparse(const SparseMatrixType_& A, const SparseMatrixType_& B, bool computeQZ = true);
|
||||
|
||||
/** \brief Reports whether the last computation was successfull.
|
||||
*
|
||||
* \returns \c Success if computation was successfull, \c NoConvergence otherwise.
|
||||
*/
|
||||
ComputationInfo info() const { return m_info; };
|
||||
|
||||
/** \brief number of performed QZ steps
|
||||
*/
|
||||
unsigned int iterations() const {
|
||||
eigen_assert(m_isInitialized && "ComplexQZ is not initialized.");
|
||||
return m_global_iter;
|
||||
};
|
||||
|
||||
private:
|
||||
Index m_n;
|
||||
const unsigned int m_maxIters;
|
||||
unsigned int m_global_iter;
|
||||
bool m_isInitialized;
|
||||
bool m_computeQZ;
|
||||
ComputationInfo m_info;
|
||||
MatrixType m_S, m_T, m_Q, m_Z;
|
||||
RealScalar m_normOfT, m_normOfS;
|
||||
Vec m_ws;
|
||||
|
||||
// Test if a Scalar is 0 up to a certain tolerance
|
||||
static bool is_negligible(const Scalar x, const RealScalar tol = NumTraits<RealScalar>::epsilon()) {
|
||||
return numext::abs(x) <= tol;
|
||||
}
|
||||
|
||||
void do_QZ_step(Index p, Index q);
|
||||
|
||||
inline Mat2 computeZk2(const Row2& b);
|
||||
|
||||
// This is basically taken from from Eigen3::RealQZ
|
||||
void hessenbergTriangular(const MatrixType& A, const MatrixType& B);
|
||||
|
||||
// This function can be called when m_Q and m_Z are initialized and m_S, m_T
|
||||
// are in hessenberg-triangular form
|
||||
void reduceHessenbergTriangular();
|
||||
|
||||
// Sparse variant of the above method.
|
||||
template <typename SparseMatrixType_>
|
||||
void hessenbergTriangularSparse(const SparseMatrixType_& A, const SparseMatrixType_& B);
|
||||
|
||||
void computeNorms();
|
||||
|
||||
Index findSmallSubdiagEntry(Index l);
|
||||
Index findSmallDiagEntry(Index f, Index l);
|
||||
|
||||
void push_down_zero_ST(Index k, Index l);
|
||||
|
||||
void reduceDiagonal2x2block(Index i);
|
||||
};
|
||||
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::compute(const MatrixType& A, const MatrixType& B, bool computeQZ) {
|
||||
m_computeQZ = computeQZ;
|
||||
m_n = A.rows();
|
||||
|
||||
eigen_assert(m_n == A.cols() && "A is not a square matrix");
|
||||
eigen_assert(m_n == B.rows() && m_n == B.cols() && "B is not a square matrix or B is not of the same size as A");
|
||||
|
||||
m_isInitialized = true;
|
||||
m_global_iter = 0;
|
||||
|
||||
// This will initialize m_Q and m_Z and bring m_S, m_T to hessenberg-triangular form
|
||||
hessenbergTriangular(A, B);
|
||||
|
||||
// We assume that we already have that S is upper-Hessenberg and T is
|
||||
// upper-triangular. This is what the hessenbergTriangular(...) method does
|
||||
reduceHessenbergTriangular();
|
||||
}
|
||||
|
||||
// This is basically taken from from Eigen3::RealQZ
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::hessenbergTriangular(const MatrixType& A, const MatrixType& B) {
|
||||
// Copy A and B, these will be the matrices on which we operate later
|
||||
m_S = A;
|
||||
m_T = B;
|
||||
|
||||
// Perform QR decomposition of the matrix Q
|
||||
HouseholderQR<MatrixType> qr(m_T);
|
||||
m_T = qr.matrixQR();
|
||||
m_T.template triangularView<StrictlyLower>().setZero();
|
||||
|
||||
if (m_computeQZ) m_Q = qr.householderQ();
|
||||
|
||||
// overwrite S with Q* x S
|
||||
m_S.applyOnTheLeft(qr.householderQ().adjoint());
|
||||
|
||||
if (m_computeQZ) m_Z = MatrixType::Identity(m_n, m_n);
|
||||
|
||||
int steps = 0;
|
||||
|
||||
// reduce S to upper Hessenberg with Givens rotations
|
||||
for (Index j = 0; j <= m_n - 3; j++) {
|
||||
for (Index i = m_n - 1; i >= j + 2; i--) {
|
||||
JacobiRotation<Scalar> G;
|
||||
// delete S(i,j)
|
||||
if (!numext::is_exactly_zero(m_S.coeff(i, j))) {
|
||||
G.makeGivens(m_S.coeff(i - 1, j), m_S.coeff(i, j), &m_S.coeffRef(i - 1, j));
|
||||
m_S.coeffRef(i, j) = Scalar(0);
|
||||
m_T.rightCols(m_n - i + 1).applyOnTheLeft(i - 1, i, G.adjoint());
|
||||
m_S.rightCols(m_n - j - 1).applyOnTheLeft(i - 1, i, G.adjoint());
|
||||
// This is what we want to achieve
|
||||
if (!is_negligible(m_S(i, j)))
|
||||
m_info = ComputationInfo::NumericalIssue;
|
||||
else
|
||||
m_S(i, j) = Scalar(0);
|
||||
// update Q
|
||||
if (m_computeQZ) m_Q.applyOnTheRight(i - 1, i, G);
|
||||
}
|
||||
|
||||
if (!numext::is_exactly_zero(m_T.coeff(i, i - 1))) {
|
||||
// Compute rotation and update matrix T
|
||||
G.makeGivens(m_T.coeff(i, i), m_T.coeff(i, i - 1), &m_T.coeffRef(i, i));
|
||||
m_T.topRows(i).applyOnTheRight(i - 1, i, G.adjoint());
|
||||
m_T.coeffRef(i, i - 1) = Scalar(0);
|
||||
// Update matrix S
|
||||
m_S.applyOnTheRight(i - 1, i, G.adjoint());
|
||||
// update Z
|
||||
if (m_computeQZ) m_Z.applyOnTheLeft(i - 1, i, G);
|
||||
}
|
||||
steps++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
template <typename SparseMatrixType_>
|
||||
void ComplexQZ<MatrixType>::hessenbergTriangularSparse(const SparseMatrixType_& A, const SparseMatrixType_& B) {
|
||||
m_S = A.toDense();
|
||||
|
||||
SparseQR<SparseMatrix<Scalar, ColMajor>, NaturalOrdering<Index>> sparseQR;
|
||||
|
||||
eigen_assert(B.isCompressed() &&
|
||||
"SparseQR requires a sparse matrix in compressed mode."
|
||||
"Call .makeCompressed() before passing it to SparseQR");
|
||||
|
||||
// Computing QR decomposition of T...
|
||||
sparseQR.setPivotThreshold(RealScalar(0)); // This prevends algorithm from doing pivoting
|
||||
sparseQR.compute(B);
|
||||
// perform QR decomposition of T, overwrite T with R, save Q
|
||||
// HouseholderQR<Mat> qrT(m_T);
|
||||
m_T = sparseQR.matrixR();
|
||||
m_T.template triangularView<StrictlyLower>().setZero();
|
||||
|
||||
if (m_computeQZ) m_Q = sparseQR.matrixQ();
|
||||
|
||||
// overwrite S with Q* S
|
||||
m_S = sparseQR.matrixQ().adjoint() * m_S;
|
||||
|
||||
if (m_computeQZ) m_Z = MatrixType::Identity(m_n, m_n);
|
||||
|
||||
unsigned int steps = 0;
|
||||
// reduce S to upper Hessenberg with Givens rotations
|
||||
for (Index j = 0; j <= m_n - 3; j++) {
|
||||
for (Index i = m_n - 1; i >= j + 2; i--) {
|
||||
JacobiRotation<Scalar> G;
|
||||
// kill S(i,j)
|
||||
// if(!numext::is_exactly_zero(_S.coeff(i, j)))
|
||||
if (m_S.coeff(i, j) != Scalar(0)) {
|
||||
// This is the adapted code
|
||||
G.makeGivens(m_S.coeff(i - 1, j), m_S.coeff(i, j), &m_S.coeffRef(i - 1, j));
|
||||
m_S.coeffRef(i, j) = Scalar(0);
|
||||
m_T.rightCols(m_n - i + 1).applyOnTheLeft(i - 1, i, G.adjoint());
|
||||
m_S.rightCols(m_n - j - 1).applyOnTheLeft(i - 1, i, G.adjoint());
|
||||
// This is what we want to achieve
|
||||
if (!is_negligible(m_S(i, j))) {
|
||||
m_info = ComputationInfo::NumericalIssue;
|
||||
}
|
||||
m_S(i, j) = Scalar(0);
|
||||
// update Q
|
||||
if (m_computeQZ) m_Q.applyOnTheRight(i - 1, i, G);
|
||||
}
|
||||
|
||||
if (!numext::is_exactly_zero(m_T.coeff(i, i - 1))) {
|
||||
// Compute rotation and update matrix T
|
||||
G.makeGivens(m_T.coeff(i, i), m_T.coeff(i, i - 1), &m_T.coeffRef(i, i));
|
||||
m_T.topRows(i).applyOnTheRight(i - 1, i, G.adjoint());
|
||||
m_T.coeffRef(i, i - 1) = Scalar(0);
|
||||
// Update matrix S
|
||||
m_S.applyOnTheRight(i - 1, i, G.adjoint());
|
||||
// update Z
|
||||
if (m_computeQZ) m_Z.applyOnTheLeft(i - 1, i, G);
|
||||
}
|
||||
steps++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
template <typename SparseMatrixType_>
|
||||
void ComplexQZ<MatrixType>::computeSparse(const SparseMatrixType_& A, const SparseMatrixType_& B, bool computeQZ) {
|
||||
m_computeQZ = computeQZ;
|
||||
m_n = A.rows();
|
||||
eigen_assert(m_n == A.cols() && "A is not a square matrix");
|
||||
eigen_assert(m_n == B.rows() && m_n == B.cols() && "B is not a square matrix or B is not of the same size as A");
|
||||
m_isInitialized = true;
|
||||
m_global_iter = 0;
|
||||
hessenbergTriangularSparse(A, B);
|
||||
|
||||
// We assume that we already have that A is upper-Hessenberg and B is
|
||||
// upper-triangular. This is what the hessenbergTriangular(...) method does
|
||||
reduceHessenbergTriangular();
|
||||
}
|
||||
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::reduceHessenbergTriangular() {
|
||||
Index l = m_n - 1, f;
|
||||
unsigned int local_iter = 0;
|
||||
computeNorms();
|
||||
|
||||
while (l > 0 && local_iter < m_maxIters) {
|
||||
f = findSmallSubdiagEntry(l);
|
||||
|
||||
// Subdiag entry is small -> can be safely set to 0
|
||||
if (f > 0) {
|
||||
m_S.coeffRef(f, f - 1) = Scalar(0);
|
||||
}
|
||||
if (f == l) { // One root found
|
||||
l--;
|
||||
local_iter = 0;
|
||||
} else if (f == l - 1) { // Two roots found
|
||||
// We found an undesired non-zero at (f+1,f) in S and eliminate it immediately
|
||||
reduceDiagonal2x2block(f);
|
||||
l -= 2;
|
||||
local_iter = 0;
|
||||
} else {
|
||||
Index z = findSmallDiagEntry(f, l);
|
||||
if (z >= f) {
|
||||
push_down_zero_ST(z, l);
|
||||
} else {
|
||||
do_QZ_step(f, m_n - l - 1);
|
||||
local_iter++;
|
||||
m_global_iter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m_info = (local_iter < m_maxIters) ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
template <typename MatrixType_>
|
||||
inline typename ComplexQZ<MatrixType_>::Mat2 ComplexQZ<MatrixType_>::computeZk2(const Row2& b) {
|
||||
Mat2 S;
|
||||
S << Scalar(0), Scalar(1), Scalar(1), Scalar(0);
|
||||
Vec2 bprime = S * b.adjoint();
|
||||
JacobiRotation<Scalar> J;
|
||||
J.makeGivens(bprime(0), bprime(1));
|
||||
Mat2 Z = S;
|
||||
Z.applyOnTheLeft(0, 1, J);
|
||||
Z = S * Z;
|
||||
return Z;
|
||||
}
|
||||
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::do_QZ_step(Index p, Index q) {
|
||||
// This is certainly not the most efficient way of doing this,
|
||||
// but a readable one.
|
||||
const auto a = [p, this](Index i, Index j) { return m_S(p + i - 1, p + j - 1); };
|
||||
const auto b = [p, this](Index i, Index j) { return m_T(p + i - 1, p + j - 1); };
|
||||
const Index m = m_n - p - q; // Size of the inner block
|
||||
Scalar x, y, z;
|
||||
// We could introduce doing exceptional shifts from time to time.
|
||||
Scalar W1 = a(m - 1, m - 1) / b(m - 1, m - 1) - a(1, 1) / b(1, 1), W2 = a(m, m) / b(m, m) - a(1, 1) / b(1, 1),
|
||||
W3 = a(m, m - 1) / b(m - 1, m - 1);
|
||||
|
||||
x = (W1 * W2 - a(m - 1, m) / b(m, m) * W3 + W3 * b(m - 1, m) / b(m, m) * a(1, 1) / b(1, 1)) * b(1, 1) / a(2, 1) +
|
||||
a(1, 2) / b(2, 2) - a(1, 1) / b(1, 1) * b(1, 2) / b(2, 2);
|
||||
y = (a(2, 2) / b(2, 2) - a(1, 1) / b(1, 1)) - a(2, 1) / b(1, 1) * b(1, 2) / b(2, 2) - W1 - W2 +
|
||||
W3 * (b(m - 1, m) / b(m, m));
|
||||
z = a(3, 2) / b(2, 2);
|
||||
Vec3 X;
|
||||
const PermutationMatrix<3, 3, int> S3(Vector3i(2, 0, 1));
|
||||
for (Index k = p; k < p + m - 2; k++) {
|
||||
X << x, y, z;
|
||||
Vec2 ess;
|
||||
Scalar tau;
|
||||
RealScalar beta;
|
||||
X.makeHouseholder(ess, tau, beta);
|
||||
// The permutations are needed because the makeHouseHolder-method computes
|
||||
// the householder transformation in a way that the vector is reflected to
|
||||
// (1 0 ... 0) instead of (0 ... 0 1)
|
||||
m_S.template middleRows<3>(k)
|
||||
.rightCols((std::min)(m_n, m_n - k + 1))
|
||||
.applyHouseholderOnTheLeft(ess, tau, m_ws.data());
|
||||
m_T.template middleRows<3>(k).rightCols(m_n - k).applyHouseholderOnTheLeft(ess, tau, m_ws.data());
|
||||
if (m_computeQZ) m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(ess, std::conj(tau), m_ws.data());
|
||||
|
||||
// Compute Matrix Zk1 s.t. (b(k+2,k) ... b(k+2, k+2)) Zk1 = (0,0,*)
|
||||
Vec3 bprime = (m_T.template block<1, 3>(k + 2, k) * S3).adjoint();
|
||||
bprime.makeHouseholder(ess, tau, beta);
|
||||
m_S.template middleCols<3>(k).topRows((std::min)(k + 4, m_n)).applyOnTheRight(S3);
|
||||
m_S.template middleCols<3>(k)
|
||||
.topRows((std::min)(k + 4, m_n))
|
||||
.applyHouseholderOnTheRight(ess, std::conj(tau), m_ws.data());
|
||||
m_S.template middleCols<3>(k).topRows((std::min)(k + 4, m_n)).applyOnTheRight(S3.transpose());
|
||||
m_T.template middleCols<3>(k).topRows((std::min)(k + 3, m_n)).applyOnTheRight(S3);
|
||||
m_T.template middleCols<3>(k)
|
||||
.topRows((std::min)(k + 3, m_n))
|
||||
.applyHouseholderOnTheRight(ess, std::conj(tau), m_ws.data());
|
||||
m_T.template middleCols<3>(k).topRows((std::min)(k + 3, m_n)).applyOnTheRight(S3.transpose());
|
||||
if (m_computeQZ) {
|
||||
m_Z.template middleRows<3>(k).applyOnTheLeft(S3.transpose());
|
||||
m_Z.template middleRows<3>(k).applyHouseholderOnTheLeft(ess, tau, m_ws.data());
|
||||
m_Z.template middleRows<3>(k).applyOnTheLeft(S3);
|
||||
}
|
||||
Mat2 Zk2 = computeZk2(m_T.template block<1, 2>(k + 1, k));
|
||||
m_S.template middleCols<2>(k).topRows((std::min)(k + 4, m_n)).applyOnTheRight(Zk2);
|
||||
m_T.template middleCols<2>(k).topRows((std::min)(k + 3, m_n)).applyOnTheRight(Zk2);
|
||||
|
||||
if (m_computeQZ) m_Z.template middleRows<2>(k).applyOnTheLeft(Zk2.adjoint());
|
||||
|
||||
x = m_S(k + 1, k);
|
||||
y = m_S(k + 2, k);
|
||||
if (k < p + m - 3) {
|
||||
z = m_S(k + 3, k);
|
||||
}
|
||||
};
|
||||
|
||||
// Find a Householdermartirx Qn1 s.t. Qn1 (x y)^T = (* 0)
|
||||
JacobiRotation<Scalar> J;
|
||||
J.makeGivens(x, y);
|
||||
m_S.template middleRows<2>(p + m - 2).applyOnTheLeft(0, 1, J.adjoint());
|
||||
m_T.template middleRows<2>(p + m - 2).applyOnTheLeft(0, 1, J.adjoint());
|
||||
|
||||
if (m_computeQZ) m_Q.template middleCols<2>(p + m - 2).applyOnTheRight(0, 1, J);
|
||||
|
||||
// Find a Householdermatrix Zn1 s.t. (b(n,n-1) b(n,n)) * Zn1 = (0 *)
|
||||
Mat2 Zn1 = computeZk2(m_T.template block<1, 2>(p + m - 1, p + m - 2));
|
||||
m_S.template middleCols<2>(p + m - 2).applyOnTheRight(Zn1);
|
||||
m_T.template middleCols<2>(p + m - 2).applyOnTheRight(Zn1);
|
||||
|
||||
if (m_computeQZ) m_Z.template middleRows<2>(p + m - 2).applyOnTheLeft(Zn1.adjoint());
|
||||
}
|
||||
|
||||
/** \internal we found an undesired non-zero at (i+1,i) on the subdiagonal of S and reduce the block */
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::reduceDiagonal2x2block(Index i) {
|
||||
// We have found a non-zero on the subdiagonal and want to eliminate it
|
||||
Mat2 Si = m_S.template block<2, 2>(i, i), Ti = m_T.template block<2, 2>(i, i);
|
||||
if (is_negligible(Ti(0, 0)) && !is_negligible(Ti(1, 1))) {
|
||||
Eigen::JacobiRotation<Scalar> G;
|
||||
G.makeGivens(m_S(i, i), m_S(i + 1, i));
|
||||
m_S.applyOnTheLeft(i, i + 1, G.adjoint());
|
||||
m_T.applyOnTheLeft(i, i + 1, G.adjoint());
|
||||
|
||||
if (m_computeQZ) m_Q.applyOnTheRight(i, i + 1, G);
|
||||
|
||||
} else if (!is_negligible(Ti(0, 0)) && is_negligible(Ti(1, 1))) {
|
||||
Eigen::JacobiRotation<Scalar> G;
|
||||
G.makeGivens(m_S(i + 1, i + 1), m_S(i + 1, i));
|
||||
m_S.applyOnTheRight(i, i + 1, G.adjoint());
|
||||
m_T.applyOnTheRight(i, i + 1, G.adjoint());
|
||||
if (m_computeQZ) m_Z.applyOnTheLeft(i, i + 1, G);
|
||||
} else if (!is_negligible(Ti(0, 0)) && !is_negligible((Ti(1, 1)))) {
|
||||
Scalar mu = Si(0, 0) / Ti(0, 0);
|
||||
Scalar a12_bar = Si(0, 1) - mu * Ti(0, 1);
|
||||
Scalar a22_bar = Si(1, 1) - mu * Ti(1, 1);
|
||||
Scalar p = Scalar(0.5) * (a22_bar / Ti(1, 1) - Ti(0, 1) * Si(1, 0) / (Ti(0, 0) * Ti(1, 1)));
|
||||
RealScalar sgn_p = p.real() >= RealScalar(0) ? RealScalar(1) : RealScalar(-1);
|
||||
Scalar q = Si(1, 0) * a12_bar / (Ti(0, 0) * Ti(1, 1));
|
||||
Scalar r = p * p + q;
|
||||
Scalar lambda = mu + p + sgn_p * numext::sqrt(r);
|
||||
Mat2 E = Si - lambda * Ti;
|
||||
Index l;
|
||||
E.rowwise().norm().maxCoeff(&l);
|
||||
JacobiRotation<Scalar> G;
|
||||
G.makeGivens(E(l, 1), E(l, 0));
|
||||
m_S.applyOnTheRight(i, i + 1, G.adjoint());
|
||||
m_T.applyOnTheRight(i, i + 1, G.adjoint());
|
||||
|
||||
if (m_computeQZ) m_Z.applyOnTheLeft(i, i + 1, G);
|
||||
|
||||
Mat2 tildeSi = m_S.template block<2, 2>(i, i), tildeTi = m_T.template block<2, 2>(i, i);
|
||||
Mat2 C = tildeSi.norm() < (lambda * tildeTi).norm() ? tildeSi : lambda * tildeTi;
|
||||
G.makeGivens(C(0, 0), C(1, 0));
|
||||
m_S.applyOnTheLeft(i, i + 1, G.adjoint());
|
||||
m_T.applyOnTheLeft(i, i + 1, G.adjoint());
|
||||
|
||||
if (m_computeQZ) m_Q.applyOnTheRight(i, i + 1, G);
|
||||
}
|
||||
|
||||
if (!is_negligible(m_S(i + 1, i), m_normOfS * NumTraits<RealScalar>::epsilon())) {
|
||||
m_info = ComputationInfo::NumericalIssue;
|
||||
} else {
|
||||
m_S(i + 1, i) = Scalar(0);
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal We found a zero at T(k,k) and want to "push it down" to T(l,l) */
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::push_down_zero_ST(Index k, Index l) {
|
||||
// Test Preconditions
|
||||
|
||||
JacobiRotation<Scalar> J;
|
||||
for (Index j = k + 1; j <= l; j++) {
|
||||
// Create a 0 at _T(j, j)
|
||||
J.makeGivens(m_T(j - 1, j), m_T(j, j), &m_T.coeffRef(j - 1, j));
|
||||
m_T.rightCols(m_n - j - 1).applyOnTheLeft(j - 1, j, J.adjoint());
|
||||
m_T.coeffRef(j, j) = Scalar(0);
|
||||
|
||||
m_S.applyOnTheLeft(j - 1, j, J.adjoint());
|
||||
|
||||
if (m_computeQZ) m_Q.applyOnTheRight(j - 1, j, J);
|
||||
|
||||
// Delete the non-desired non-zero at _S(j, j-2)
|
||||
if (j > 1) {
|
||||
J.makeGivens(std::conj(m_S(j, j - 1)), std::conj(m_S(j, j - 2)));
|
||||
m_S.applyOnTheRight(j - 1, j - 2, J);
|
||||
m_S(j, j - 2) = Scalar(0);
|
||||
m_T.applyOnTheRight(j - 1, j - 2, J);
|
||||
if (m_computeQZ) m_Z.applyOnTheLeft(j - 1, j - 2, J.adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
// Assume we have the desired structure now, up to the non-zero entry at
|
||||
// _S(l, l-1) which we will delete through a last right-jacobi-rotation
|
||||
J.makeGivens(std::conj(m_S(l, l)), std::conj(m_S(l, l - 1)));
|
||||
m_S.topRows(l + 1).applyOnTheRight(l, l - 1, J);
|
||||
|
||||
if (!is_negligible(m_S(l, l - 1), m_normOfS * NumTraits<Scalar>::epsilon())) {
|
||||
m_info = ComputationInfo::NumericalIssue;
|
||||
} else {
|
||||
m_S(l, l - 1) = Scalar(0);
|
||||
}
|
||||
m_T.topRows(l + 1).applyOnTheRight(l, l - 1, J);
|
||||
|
||||
if (m_computeQZ) m_Z.applyOnTheLeft(l, l - 1, J.adjoint());
|
||||
|
||||
// Ensure postconditions
|
||||
if (!is_negligible(m_T(l, l)) || !is_negligible(m_S(l, l - 1))) {
|
||||
m_info = ComputationInfo::NumericalIssue;
|
||||
} else {
|
||||
m_T(l, l) = Scalar(0);
|
||||
m_S(l, l - 1) = Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
|
||||
template <typename MatrixType_>
|
||||
void ComplexQZ<MatrixType_>::computeNorms() {
|
||||
const Index size = m_S.cols();
|
||||
m_normOfS = RealScalar(0);
|
||||
m_normOfT = RealScalar(0);
|
||||
for (Index j = 0; j < size; ++j) {
|
||||
m_normOfS += m_S.col(j).segment(0, (std::min)(size, j + 2)).cwiseAbs().sum();
|
||||
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0). Copied from Eigen3 RealQZ
|
||||
* implementation */
|
||||
template <typename MatrixType_>
|
||||
inline Index ComplexQZ<MatrixType_>::findSmallSubdiagEntry(Index iu) {
|
||||
Index res = iu;
|
||||
while (res > 0) {
|
||||
RealScalar s = numext::abs(m_S.coeff(res - 1, res - 1)) + numext::abs(m_S.coeff(res, res));
|
||||
if (s == Scalar(0)) s = m_normOfS;
|
||||
if (numext::abs(m_S.coeff(res, res - 1)) < NumTraits<RealScalar>::epsilon() * s) break;
|
||||
res--;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
//
|
||||
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1).
|
||||
* Copied from Eigen3 RealQZ implementation. */
|
||||
template <typename MatrixType_>
|
||||
inline Index ComplexQZ<MatrixType_>::findSmallDiagEntry(Index f, Index l) {
|
||||
Index res = l;
|
||||
while (res >= f) {
|
||||
if (numext::abs(m_T.coeff(res, res)) <= NumTraits<RealScalar>::epsilon() * m_normOfT) break;
|
||||
res--;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#endif // _COMPLEX_QZ_H_
|
||||
@@ -335,8 +335,8 @@ struct apply_rotation_in_the_plane_selector<Scalar, OtherScalar, SizeAtCompileTi
|
||||
for (Index i = alignedStart; i < alignedEnd; i += PacketSize) {
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi)));
|
||||
pstore(py, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi)));
|
||||
pstore(px, pm.pmadd(pc, xi, pcj.pmul(ps, yi)));
|
||||
pstore(py, pcj.pmsub(pc, yi, pm.pmul(ps, xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
@@ -347,18 +347,18 @@ struct apply_rotation_in_the_plane_selector<Scalar, OtherScalar, SizeAtCompileTi
|
||||
Packet xi1 = ploadu<Packet>(px + PacketSize);
|
||||
Packet yi = pload<Packet>(py);
|
||||
Packet yi1 = pload<Packet>(py + PacketSize);
|
||||
pstoreu(px, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi)));
|
||||
pstoreu(px + PacketSize, padd(pm.pmul(pc, xi1), pcj.pmul(ps, yi1)));
|
||||
pstore(py, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi)));
|
||||
pstore(py + PacketSize, psub(pcj.pmul(pc, yi1), pm.pmul(ps, xi1)));
|
||||
pstoreu(px, pm.pmadd(pc, xi, pcj.pmul(ps, yi)));
|
||||
pstoreu(px + PacketSize, pm.pmadd(pc, xi1, pcj.pmul(ps, yi1)));
|
||||
pstore(py, pcj.pmsub(pc, yi, pm.pmul(ps, xi)));
|
||||
pstore(py + PacketSize, pcj.pmsub(pc, yi1, pm.pmul(ps, xi1)));
|
||||
px += Peeling * PacketSize;
|
||||
py += Peeling * PacketSize;
|
||||
}
|
||||
if (alignedEnd != peelingEnd) {
|
||||
Packet xi = ploadu<Packet>(x + peelingEnd);
|
||||
Packet yi = pload<Packet>(y + peelingEnd);
|
||||
pstoreu(x + peelingEnd, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi)));
|
||||
pstore(y + peelingEnd, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi)));
|
||||
pstoreu(x + peelingEnd, pm.pmadd(pc, xi, pcj.pmul(ps, yi)));
|
||||
pstore(y + peelingEnd, pcj.pmsub(pc, yi, pm.pmul(ps, xi)));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -381,8 +381,8 @@ struct apply_rotation_in_the_plane_selector<Scalar, OtherScalar, SizeAtCompileTi
|
||||
for (Index i = 0; i < size; i += PacketSize) {
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi)));
|
||||
pstore(py, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi)));
|
||||
pstore(px, pm.pmadd(pc, xi, pcj.pmul(ps, yi)));
|
||||
pstore(py, pcj.pmsub(pc, yi, pm.pmul(ps, xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
|
||||
@@ -182,7 +182,7 @@ class KLU : public SparseSolverBase<KLU<MatrixType_> > {
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the pattern anylysis has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the pattern anylysis has been performed.
|
||||
*
|
||||
* \sa analyzePattern(), compute()
|
||||
*/
|
||||
|
||||
@@ -157,7 +157,8 @@ class PardisoImpl : public SparseSolverBase<Derived> {
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
|
||||
@@ -416,7 +416,8 @@ class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<MatrixType_, U
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
@@ -504,7 +505,8 @@ class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<MatrixType_,
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
@@ -585,7 +587,8 @@ class SimplicialNonHermitianLLT
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
@@ -674,7 +677,8 @@ class SimplicialNonHermitianLDLT
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
@@ -757,7 +761,8 @@ class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<Matr
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
|
||||
@@ -487,7 +487,8 @@ class SuperLU : public SuperLUBase<MatrixType_, SuperLU<MatrixType_> > {
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
@@ -791,7 +792,8 @@ class SuperILU : public SuperLUBase<MatrixType_, SuperILU<MatrixType_> > {
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the symbolic decomposition has been
|
||||
* performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
|
||||
@@ -425,7 +425,7 @@ class UmfPackLU : public SparseSolverBase<UmfPackLU<MatrixType_> > {
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparsity than the matrix on which the pattern anylysis has been performed.
|
||||
* The given matrix must have the same sparsity than the matrix on which the pattern anylysis has been performed.
|
||||
*
|
||||
* \sa analyzePattern(), compute()
|
||||
*/
|
||||
|
||||
@@ -19,9 +19,10 @@ add_library(eigen_blas_static STATIC ${EigenBlas_SRCS})
|
||||
list(APPEND EIGEN_BLAS_TARGETS eigen_blas_static)
|
||||
|
||||
if (EIGEN_BUILD_SHARED_LIBS)
|
||||
add_library(eigen_blas SHARED ${EigenBlas_SRCS})
|
||||
add_library(eigen_blas SHARED ${EigenBlas_SRCS} "eigen_blas.def")
|
||||
target_compile_definitions(eigen_blas PUBLIC "EIGEN_BLAS_BUILD_DLL")
|
||||
set_target_properties(eigen_blas PROPERTIES CXX_VISIBILITY_PRESET hidden)
|
||||
list(APPEND EIGEN_BLAS_TARGETS eigen_blas)
|
||||
target_compile_definitions(eigen_blas PUBLIC "EIGEN_BUILD_DLL")
|
||||
endif()
|
||||
|
||||
foreach(target IN LISTS EIGEN_BLAS_TARGETS)
|
||||
|
||||
12
blas/blas.h
12
blas/blas.h
@@ -2,13 +2,15 @@
|
||||
#define BLAS_H
|
||||
|
||||
#if defined(_WIN32)
|
||||
#if defined(EIGEN_BUILD_DLL)
|
||||
#if defined(EIGEN_BLAS_BUILD_DLL)
|
||||
#define EIGEN_BLAS_API __declspec(dllexport)
|
||||
#elif defined(EIGEN_LINK_DLL)
|
||||
#elif defined(EIGEN_BLAS_LINK_DLL)
|
||||
#define EIGEN_BLAS_API __declspec(dllimport)
|
||||
#else
|
||||
#define EIGEN_BLAS_API
|
||||
#endif
|
||||
#elif ((defined(__GNUC__) && __GNUC__ >= 4) || defined(__clang__)) && defined(EIGEN_BLAS_BUILD_DLL)
|
||||
#define EIGEN_BLAS_API __attribute__((visibility("default")))
|
||||
#else
|
||||
#define EIGEN_BLAS_API
|
||||
#endif
|
||||
@@ -27,6 +29,7 @@ typedef long BLASLONG;
|
||||
typedef unsigned long BLASULONG;
|
||||
#endif
|
||||
|
||||
EIGEN_BLAS_API int BLASFUNC(lsame)(const char *, const char *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xerbla)(const char *, int *info);
|
||||
|
||||
EIGEN_BLAS_API float BLASFUNC(sdot)(int *, float *, int *, float *, int *);
|
||||
@@ -36,6 +39,11 @@ EIGEN_BLAS_API double BLASFUNC(dsdot)(int *, float *, int *, float *, int *);
|
||||
EIGEN_BLAS_API double BLASFUNC(ddot)(int *, double *, int *, double *, int *);
|
||||
EIGEN_BLAS_API double BLASFUNC(qdot)(int *, double *, int *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(cdotu)(int *, float *, int *, float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cdotc)(int *, float *, int *, float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zdotu)(int *, double *, int *, double *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zdotc)(int *, double *, int *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(cdotuw)(int *, float *, int *, float *, int *, float *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cdotcw)(int *, float *, int *, float *, int *, float *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zdotuw)(int *, double *, int *, double *, int *, double *);
|
||||
|
||||
222
blas/eigen_blas.def
Normal file
222
blas/eigen_blas.def
Normal file
@@ -0,0 +1,222 @@
|
||||
; Definition file for eigen_blas.dll.
|
||||
|
||||
LIBRARY eigen_blas
|
||||
EXPORTS
|
||||
; Utilities
|
||||
lsame_
|
||||
xerbla_
|
||||
|
||||
; Level 1
|
||||
saxpy_
|
||||
daxpy_
|
||||
caxpy_
|
||||
zaxpy_
|
||||
; caxpyc_
|
||||
; zaxpyc_
|
||||
scopy_
|
||||
dcopy_
|
||||
ccopy_
|
||||
zcopy_
|
||||
sdot_
|
||||
sdsdot_
|
||||
dsdot_
|
||||
ddot_
|
||||
cdotc_
|
||||
zdotc_
|
||||
cdotu_
|
||||
zdotu_
|
||||
cdotcw_
|
||||
zdotcw_
|
||||
cdotuw_
|
||||
zdotuw_
|
||||
snrm2_
|
||||
dnrm2_
|
||||
scnrm2_
|
||||
dznrm2_
|
||||
srot_
|
||||
drot_
|
||||
csrot_
|
||||
zdrot_
|
||||
srotg_
|
||||
drotg_
|
||||
crotg_
|
||||
zrotg_
|
||||
srotm_
|
||||
drotm_
|
||||
srotmg_
|
||||
drotmg_
|
||||
sscal_
|
||||
dscal_
|
||||
cscal_
|
||||
zscal_
|
||||
csscal_
|
||||
zdscal_
|
||||
sswap_
|
||||
dswap_
|
||||
cswap_
|
||||
zswap_
|
||||
sasum_
|
||||
scasum_
|
||||
dasum_
|
||||
dzasum_
|
||||
; ismax_
|
||||
; idmax_
|
||||
; icmax_
|
||||
; izmax_
|
||||
isamax_
|
||||
idamax_
|
||||
icamax_
|
||||
izamax_
|
||||
isamin_
|
||||
idamin_
|
||||
icamin_
|
||||
izamin_
|
||||
; ismin_
|
||||
; idmin_
|
||||
; icmin_
|
||||
; izmin_
|
||||
; samax_
|
||||
; damax_
|
||||
; scamax_
|
||||
; dzamax_
|
||||
; samin_
|
||||
; damin_
|
||||
; scamin_
|
||||
; dzamin_
|
||||
; smax_
|
||||
; dmax_
|
||||
; cmax_
|
||||
; zmax_
|
||||
; smin_
|
||||
; dmin_
|
||||
; cmin_
|
||||
; zmin_
|
||||
|
||||
|
||||
; Level 2
|
||||
sgemv_
|
||||
dgemv_
|
||||
cgemv_
|
||||
zgemv_
|
||||
sger_
|
||||
dger_
|
||||
cgerc_
|
||||
zgerc_
|
||||
cgeru_
|
||||
zgeru_
|
||||
ssymv_
|
||||
dsymv_
|
||||
ssyr_
|
||||
dsyr_
|
||||
ssyr2_
|
||||
dsyr2_
|
||||
; csyr2_
|
||||
; zsyr2_
|
||||
strmv_
|
||||
dtrmv_
|
||||
ctrmv_
|
||||
ztrmv_
|
||||
strsv_
|
||||
dtrsv_
|
||||
ctrsv_
|
||||
ztrsv_
|
||||
stpsv_
|
||||
dtpsv_
|
||||
ctpsv_
|
||||
ztpsv_
|
||||
stpmv_
|
||||
dtpmv_
|
||||
ctpmv_
|
||||
ztpmv_
|
||||
stbmv_
|
||||
dtbmv_
|
||||
ctbmv_
|
||||
ztbmv_
|
||||
stbsv_
|
||||
dtbsv_
|
||||
ctbsv_
|
||||
ztbsv_
|
||||
sspmv_
|
||||
dspmv_
|
||||
sspr_
|
||||
dspr_
|
||||
; cspr_
|
||||
; zspr_
|
||||
sspr2_
|
||||
dspr2_
|
||||
; cspr2_
|
||||
; zspr2_
|
||||
cher_
|
||||
zher_
|
||||
chpr_
|
||||
zhpr_
|
||||
cher2_
|
||||
zher2_
|
||||
chpr2_
|
||||
zhpr2_
|
||||
chemv_
|
||||
zhemv_
|
||||
chpmv_
|
||||
zhpmv_
|
||||
; snorm_
|
||||
; dnorm_
|
||||
; cnorm_
|
||||
; znorm_
|
||||
sgbmv_
|
||||
dgbmv_
|
||||
cgbmv_
|
||||
zgbmv_
|
||||
ssbmv_
|
||||
dsbmv_
|
||||
; csbmv_
|
||||
; zsbmv_
|
||||
chbmv_
|
||||
zhbmv_
|
||||
|
||||
; Level 3 BLAS
|
||||
sgemm_
|
||||
dgemm_
|
||||
cgemm_
|
||||
zgemm_
|
||||
; cgemm3m_
|
||||
; zgemm3m_
|
||||
; sge2mm_
|
||||
; dge2mm_
|
||||
; cge2mm_
|
||||
; zge2mm_
|
||||
ssymm_
|
||||
dsymm_
|
||||
csymm_
|
||||
zsymm_
|
||||
; csymm3m_
|
||||
; zsymm3m_
|
||||
ssyrk_
|
||||
dsyrk_
|
||||
csyrk_
|
||||
zsyrk_
|
||||
ssyr2k_
|
||||
dsyr2k_
|
||||
csyr2k_
|
||||
zsyr2k_
|
||||
strmm_
|
||||
dtrmm_
|
||||
ctrmm_
|
||||
ztrmm_
|
||||
strsm_
|
||||
dtrsm_
|
||||
ctrsm_
|
||||
ztrsm_
|
||||
chemm_
|
||||
zhemm_
|
||||
; chemm3m_
|
||||
; zhemm3m_
|
||||
cherk_
|
||||
zherk_
|
||||
cher2k_
|
||||
zher2k_
|
||||
; cher2m_
|
||||
; zher2m_
|
||||
sgemmtr_
|
||||
dgemmtr_
|
||||
cgemmtr_
|
||||
zgemmtr_
|
||||
@@ -1,6 +1,8 @@
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "blas.h"
|
||||
|
||||
#if (defined __GNUC__) && (!defined __MINGW32__) && (!defined __CYGWIN__)
|
||||
#define EIGEN_WEAK_LINKING __attribute__((weak))
|
||||
#else
|
||||
|
||||
@@ -22,9 +22,11 @@ add_custom_target(lapack)
|
||||
include_directories(../blas)
|
||||
|
||||
set(EigenLapack_SRCS
|
||||
dsecnd_INT_CPU_TIME.cpp second_INT_CPU_TIME.cpp single.cpp double.cpp complex_single.cpp complex_double.cpp ../blas/xerbla.cpp
|
||||
dsecnd_INT_CPU_TIME.cpp second_INT_CPU_TIME.cpp single.cpp double.cpp complex_single.cpp complex_double.cpp
|
||||
)
|
||||
|
||||
set(EIGEN_LAPACK_DEF "eigen_lapack_cpp.def")
|
||||
|
||||
if(EIGEN_Fortran_COMPILER_WORKS)
|
||||
|
||||
set(EigenLapack_SRCS ${EigenLapack_SRCS}
|
||||
@@ -40,6 +42,8 @@ set(EigenLapack_SRCS ${EigenLapack_SRCS}
|
||||
slamch.f dlamch.f
|
||||
)
|
||||
|
||||
set(EIGEN_LAPACK_DEF "eigen_lapack.def")
|
||||
|
||||
option(EIGEN_ENABLE_LAPACK_TESTS OFF "Enable the Lapack unit tests")
|
||||
|
||||
if(EIGEN_ENABLE_LAPACK_TESTS)
|
||||
@@ -98,13 +102,16 @@ endif()
|
||||
set(EIGEN_LAPACK_TARGETS "")
|
||||
|
||||
add_library(eigen_lapack_static STATIC ${EigenLapack_SRCS} ${ReferenceLapack_SRCS})
|
||||
target_link_libraries(eigen_lapack_static eigen_blas_static)
|
||||
list(APPEND EIGEN_LAPACK_TARGETS eigen_lapack_static)
|
||||
|
||||
if (EIGEN_BUILD_SHARED_LIBS)
|
||||
add_library(eigen_lapack SHARED ${EigenLapack_SRCS})
|
||||
target_compile_definitions(eigen_lapack PUBLIC "EIGEN_BUILD_DLL")
|
||||
list(APPEND EIGEN_LAPACK_TARGETS eigen_lapack)
|
||||
add_library(eigen_lapack SHARED ${EigenLapack_SRCS} ${EIGEN_LAPACK_DEF})
|
||||
# Build LAPACK but link BLAS.
|
||||
target_compile_definitions(eigen_lapack PUBLIC "EIGEN_BLAS_LINK_DLL" "EIGEN_LAPACK_BUILD_DLL")
|
||||
target_link_libraries(eigen_lapack eigen_blas)
|
||||
set_target_properties(eigen_lapack PROPERTIES CXX_VISIBILITY_PRESET hidden)
|
||||
list(APPEND EIGEN_LAPACK_TARGETS eigen_lapack)
|
||||
endif()
|
||||
|
||||
foreach(target IN LISTS EIGEN_LAPACK_TARGETS)
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
#include <Eigen/Cholesky>
|
||||
|
||||
// POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
|
||||
EIGEN_LAPACK_FUNC(potrf)(char *uplo, int *n, RealScalar *pa, int *lda, int *info) {
|
||||
EIGEN_LAPACK_FUNC(potrf)(const char *uplo, int *n, RealScalar *pa, int *lda, int *info) {
|
||||
*info = 0;
|
||||
if (UPLO(*uplo) == INVALID)
|
||||
*info = -1;
|
||||
@@ -38,7 +38,8 @@ EIGEN_LAPACK_FUNC(potrf)(char *uplo, int *n, RealScalar *pa, int *lda, int *info
|
||||
// POTRS solves a system of linear equations A*X = B with a symmetric
|
||||
// positive definite matrix A using the Cholesky factorization
|
||||
// A = U**T*U or A = L*L**T computed by DPOTRF.
|
||||
EIGEN_LAPACK_FUNC(potrs)(char *uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info) {
|
||||
EIGEN_LAPACK_FUNC(potrs)
|
||||
(const char *uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info) {
|
||||
*info = 0;
|
||||
if (UPLO(*uplo) == INVALID)
|
||||
*info = -1;
|
||||
|
||||
@@ -15,6 +15,8 @@
|
||||
#include <ctime>
|
||||
#endif
|
||||
|
||||
#include "lapack.h"
|
||||
|
||||
extern "C" {
|
||||
double dsecnd_();
|
||||
}
|
||||
|
||||
143
lapack/eigen_lapack.def
Normal file
143
lapack/eigen_lapack.def
Normal file
@@ -0,0 +1,143 @@
|
||||
; Definition file for eigen_lapack.dll.
|
||||
|
||||
LIBRARY eigen_lapack
|
||||
EXPORTS
|
||||
; Eigen C/C++ implementations
|
||||
; Utilities
|
||||
xerbla_
|
||||
|
||||
; Eigenvalues
|
||||
ssyev_
|
||||
dsyev_
|
||||
|
||||
; LU
|
||||
sgetrf_
|
||||
sgetrs_
|
||||
dgetrf_
|
||||
dgetrs_
|
||||
cgetrf_
|
||||
cgetrs_
|
||||
zgetrf_
|
||||
zgetrs_
|
||||
|
||||
; QR
|
||||
spotrf_
|
||||
spotrs_
|
||||
dpotrf_
|
||||
dpotrs_
|
||||
cpotrf_
|
||||
cpotrs_
|
||||
zpotrf_
|
||||
zpotrs_
|
||||
|
||||
; SVD
|
||||
sgesdd_
|
||||
sgesvd_
|
||||
dgesdd_
|
||||
dgesvd_
|
||||
cgesdd_
|
||||
cgesvd_
|
||||
zgesdd_
|
||||
zgesvd_
|
||||
|
||||
; Time
|
||||
second_
|
||||
dsecnd_
|
||||
|
||||
; Fortran implementations
|
||||
clacgv_
|
||||
zlacgv_
|
||||
sladiv_
|
||||
dladiv_
|
||||
cladiv_
|
||||
zladiv_
|
||||
slamch_
|
||||
dlamch_
|
||||
slamc3_
|
||||
dlamc3_
|
||||
slapy2_
|
||||
dlapy2_
|
||||
slapy3_
|
||||
dlapy3_
|
||||
slarf_
|
||||
dlarf_
|
||||
clarf_
|
||||
zlarf_
|
||||
slarfb_
|
||||
dlarfb_
|
||||
clarfb_
|
||||
zlarfb_
|
||||
slarfg_
|
||||
dlarfg_
|
||||
clarfg_
|
||||
zlarfg_
|
||||
slarft_
|
||||
dlarft_
|
||||
clarft_
|
||||
zlarft_
|
||||
ilaclc_
|
||||
ilaclr_
|
||||
iladlc_
|
||||
iladlr_
|
||||
ilaslc_
|
||||
ilaslr_
|
||||
ilazlc_
|
||||
ilazlr_
|
||||
|
||||
; Missing
|
||||
; csymv_
|
||||
; zsymv_
|
||||
; cspmv_
|
||||
; zspmv_
|
||||
; csyr_
|
||||
; zsyr_
|
||||
; cspr_
|
||||
; zspr_
|
||||
; sgemt_
|
||||
; dgemt_
|
||||
; cgemt_
|
||||
; zgemt_
|
||||
; sgema_
|
||||
; dgema_
|
||||
; cgema_
|
||||
; zgema_
|
||||
; sgems_
|
||||
; dgems_
|
||||
; cgems_
|
||||
; zgems_
|
||||
; sgetf2_
|
||||
; dgetf2_
|
||||
; cgetf2_
|
||||
; zgetf2_
|
||||
; slaswp_
|
||||
; dlaswp_
|
||||
; claswp_
|
||||
; zlaswp_
|
||||
; sgesv_
|
||||
; dgesv_
|
||||
; cgesv_
|
||||
; zgesv_
|
||||
; spotf2_
|
||||
; dpotf2_
|
||||
; cpotf2_
|
||||
; zpotf2_
|
||||
; slauu2_
|
||||
; dlauu2_
|
||||
; clauu2_
|
||||
; zlauu2_
|
||||
; slauum_
|
||||
; dlauum_
|
||||
; clauum_
|
||||
; zlauum_
|
||||
; strti2_
|
||||
; dtrti2_
|
||||
; ctrti2_
|
||||
; ztrti2_
|
||||
; strtri_
|
||||
; dtrtri_
|
||||
; ctrtri_
|
||||
; ztrtri_
|
||||
; spotri_
|
||||
; dpotri_
|
||||
; cpotri_
|
||||
; zpotri_
|
||||
143
lapack/eigen_lapack_cpp.def
Normal file
143
lapack/eigen_lapack_cpp.def
Normal file
@@ -0,0 +1,143 @@
|
||||
; Definition file for eigen_lapack.dll, containing only the C++ implementations.
|
||||
|
||||
LIBRARY eigen_lapack
|
||||
EXPORTS
|
||||
; Eigen C/C++ implementations
|
||||
; Utilities
|
||||
xerbla_
|
||||
|
||||
; Eigenvalues
|
||||
ssyev_
|
||||
dsyev_
|
||||
|
||||
; LU
|
||||
sgetrf_
|
||||
sgetrs_
|
||||
dgetrf_
|
||||
dgetrs_
|
||||
cgetrf_
|
||||
cgetrs_
|
||||
zgetrf_
|
||||
zgetrs_
|
||||
|
||||
; QR
|
||||
spotrf_
|
||||
spotrs_
|
||||
dpotrf_
|
||||
dpotrs_
|
||||
cpotrf_
|
||||
cpotrs_
|
||||
zpotrf_
|
||||
zpotrs_
|
||||
|
||||
; SVD
|
||||
sgesdd_
|
||||
sgesvd_
|
||||
dgesdd_
|
||||
dgesvd_
|
||||
cgesdd_
|
||||
cgesvd_
|
||||
zgesdd_
|
||||
zgesvd_
|
||||
|
||||
; Time
|
||||
second_
|
||||
dsecnd_
|
||||
|
||||
; Fortran implementations
|
||||
; clacgv_
|
||||
; zlacgv_
|
||||
; sladiv_
|
||||
; dladiv_
|
||||
; cladiv_
|
||||
; zladiv_
|
||||
; slamch_
|
||||
; dlamch_
|
||||
; slamc3_
|
||||
; dlamc3_
|
||||
; slapy2_
|
||||
; dlapy2_
|
||||
; slapy3_
|
||||
; dlapy3_
|
||||
; slarf_
|
||||
; dlarf_
|
||||
; clarf_
|
||||
; zlarf_
|
||||
; slarfb_
|
||||
; dlarfb_
|
||||
; clarfb_
|
||||
; zlarfb_
|
||||
; slarfg_
|
||||
; dlarfg_
|
||||
; clarfg_
|
||||
; zlarfg_
|
||||
; slarft_
|
||||
; dlarft_
|
||||
; clarft_
|
||||
; zlarft_
|
||||
; ilaclc_
|
||||
; ilaclr_
|
||||
; iladlc_
|
||||
; iladlr_
|
||||
; ilaslc_
|
||||
; ilaslr_
|
||||
; ilazlc_
|
||||
; ilazlr_
|
||||
|
||||
; Missing
|
||||
; csymv_
|
||||
; zsymv_
|
||||
; cspmv_
|
||||
; zspmv_
|
||||
; csyr_
|
||||
; zsyr_
|
||||
; cspr_
|
||||
; zspr_
|
||||
; sgemt_
|
||||
; dgemt_
|
||||
; cgemt_
|
||||
; zgemt_
|
||||
; sgema_
|
||||
; dgema_
|
||||
; cgema_
|
||||
; zgema_
|
||||
; sgems_
|
||||
; dgems_
|
||||
; cgems_
|
||||
; zgems_
|
||||
; sgetf2_
|
||||
; dgetf2_
|
||||
; cgetf2_
|
||||
; zgetf2_
|
||||
; slaswp_
|
||||
; dlaswp_
|
||||
; claswp_
|
||||
; zlaswp_
|
||||
; sgesv_
|
||||
; dgesv_
|
||||
; cgesv_
|
||||
; zgesv_
|
||||
; spotf2_
|
||||
; dpotf2_
|
||||
; cpotf2_
|
||||
; zpotf2_
|
||||
; slauu2_
|
||||
; dlauu2_
|
||||
; clauu2_
|
||||
; zlauu2_
|
||||
; slauum_
|
||||
; dlauum_
|
||||
; clauum_
|
||||
; zlauum_
|
||||
; strti2_
|
||||
; dtrti2_
|
||||
; ctrti2_
|
||||
; ztrti2_
|
||||
; strtri_
|
||||
; dtrtri_
|
||||
; ctrtri_
|
||||
; ztrtri_
|
||||
; spotri_
|
||||
; dpotri_
|
||||
; cpotri_
|
||||
; zpotri_
|
||||
@@ -12,7 +12,8 @@
|
||||
|
||||
// computes eigen values and vectors of a general N-by-N matrix A
|
||||
EIGEN_LAPACK_FUNC(syev)
|
||||
(char* jobz, char* uplo, int* n, Scalar* a, int* lda, Scalar* w, Scalar* /*work*/, int* lwork, int* info) {
|
||||
(const char* jobz, const char* uplo, int* n, RealScalar* ra, int* lda, RealScalar* rw, RealScalar* /*work*/, int* lwork,
|
||||
int* info) {
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork == -1;
|
||||
|
||||
@@ -40,6 +41,9 @@ EIGEN_LAPACK_FUNC(syev)
|
||||
|
||||
if (*n == 0) return;
|
||||
|
||||
Scalar* a = reinterpret_cast<Scalar*>(ra);
|
||||
Scalar* w = reinterpret_cast<Scalar*>(rw);
|
||||
|
||||
PlainMatrixType mat(*n, *n);
|
||||
if (UPLO(*uplo) == UP)
|
||||
mat = matrix(a, *n, *n, *lda).adjoint();
|
||||
|
||||
271
lapack/lapack.h
271
lapack/lapack.h
@@ -3,135 +3,192 @@
|
||||
|
||||
#include "../blas/blas.h"
|
||||
|
||||
#if defined(_WIN32)
|
||||
#if defined(EIGEN_LAPACK_BUILD_DLL)
|
||||
#define EIGEN_LAPACK_API __declspec(dllexport)
|
||||
#elif defined(EIGEN_LAPACK_LINK_DLL)
|
||||
#define EIGEN_LAPACK_API __declspec(dllimport)
|
||||
#else
|
||||
#define EIGEN_LAPACK_API
|
||||
#endif
|
||||
#elif ((defined(__GNUC__) && __GNUC__ >= 4) || defined(__clang__)) && defined(EIGEN_LAPACK_BUILD_DLL)
|
||||
#define EIGEN_LAPACK_API __attribute__((visibility("default")))
|
||||
#else
|
||||
#define EIGEN_LAPACK_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(csymv)(const char *, const int *, const float *, const float *, const int *, const float *,
|
||||
const int *, const float *, float *, const int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zsymv)(const char *, const int *, const double *, const double *, const int *,
|
||||
const double *, const int *, const double *, double *, const int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xsymv)(const char *, const int *, const double *, const double *, const int *,
|
||||
const double *, const int *, const double *, double *, const int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(csymv)(const char *, const int *, const float *, const float *, const int *,
|
||||
const float *, const int *, const float *, float *, const int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zsymv)(const char *, const int *, const double *, const double *, const int *,
|
||||
const double *, const int *, const double *, double *, const int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xsymv)(const char *, const int *, const double *, const double *, const int *,
|
||||
const double *, const int *, const double *, double *, const int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(cspmv)(char *, int *, float *, float *, float *, int *, float *, float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zspmv)(char *, int *, double *, double *, double *, int *, double *, double *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xspmv)(char *, int *, double *, double *, double *, int *, double *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cspmv)(char *, int *, float *, float *, float *, int *, float *, float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zspmv)(char *, int *, double *, double *, double *, int *, double *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xspmv)(char *, int *, double *, double *, double *, int *, double *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(csyr)(char *, int *, float *, float *, int *, float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zsyr)(char *, int *, double *, double *, int *, double *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xsyr)(char *, int *, double *, double *, int *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(csyr)(char *, int *, float *, float *, int *, float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zsyr)(char *, int *, double *, double *, int *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xsyr)(char *, int *, double *, double *, int *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(cspr)(char *, int *, float *, float *, int *, float *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zspr)(char *, int *, double *, double *, int *, double *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xspr)(char *, int *, double *, double *, int *, double *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cspr)(char *, int *, float *, float *, int *, float *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zspr)(char *, int *, double *, double *, int *, double *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xspr)(char *, int *, double *, double *, int *, double *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgemt)(char *, int *, int *, float *, float *, int *, float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgemt)(char *, int *, int *, double *, double *, int *, double *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgemt)(char *, int *, int *, float *, float *, int *, float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgemt)(char *, int *, int *, double *, double *, int *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgemt)(char *, int *, int *, float *, float *, int *, float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgemt)(char *, int *, int *, double *, double *, int *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgemt)(char *, int *, int *, float *, float *, int *, float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgemt)(char *, int *, int *, double *, double *, int *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgema)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgema)(char *, char *, int *, int *, double *, double *, int *, double *, double *, int *,
|
||||
double *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgema)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgema)(char *, char *, int *, int *, double *, double *, int *, double *, double *, int *,
|
||||
double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgema)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgema)(char *, char *, int *, int *, double *, double *, int *, double *, double *,
|
||||
int *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgema)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgema)(char *, char *, int *, int *, double *, double *, int *, double *, double *,
|
||||
int *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgems)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgems)(char *, char *, int *, int *, double *, double *, int *, double *, double *, int *,
|
||||
double *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgems)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgems)(char *, char *, int *, int *, double *, double *, int *, double *, double *, int *,
|
||||
double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgems)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgems)(char *, char *, int *, int *, double *, double *, int *, double *, double *,
|
||||
int *, double *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgems)(char *, char *, int *, int *, float *, float *, int *, float *, float *, int *,
|
||||
float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgems)(char *, char *, int *, int *, double *, double *, int *, double *, double *,
|
||||
int *, double *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgetf2)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgetf2)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgetf2)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgetf2)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xgetf2)(int *, int *, double *, int *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgetrf)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgetrf)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(slaswp)(int *, float *, int *, int *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(claswp)(int *, float *, int *, int *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(slaswp)(int *, float *, int *, int *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(claswp)(int *, float *, int *, int *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xlaswp)(int *, double *, int *, int *, int *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(sgesv)(int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cgesv)(int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgesv)(int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgesv)(int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xgesv)(int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(spotf2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cpotf2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(spotf2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cpotf2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zpotf2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xpotf2)(char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(spotrf)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dpotrf)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qpotrf)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cpotrf)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zpotrf)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xpotrf)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qpotrf)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xpotrf)(char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(slauu2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(clauu2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(slauu2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(clauu2)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zlauu2)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xlauu2)(char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(slauum)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(clauum)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(slauum)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(clauum)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zlauum)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xlauum)(char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(strti2)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dtrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qtrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(ctrti2)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(ztrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xtrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(strti2)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dtrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qtrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(ctrti2)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(ztrti2)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xtrti2)(char *, char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(strtri)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dtrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qtrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(ctrtri)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(ztrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xtrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(strtri)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dtrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qtrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(ctrtri)(char *, char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(ztrtri)(char *, char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xtrtri)(char *, char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_BLAS_API void BLASFUNC(spotri)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(dpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(qpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(cpotri)(char *, int *, float *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(zpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_BLAS_API void BLASFUNC(xpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(spotri)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(qpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cpotri)(char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zpotri)(char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(xpotri)(char *, int *, double *, int *, int *);
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Eigen C++ implementations.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
// Cholesky.
|
||||
EIGEN_LAPACK_API void BLASFUNC(spotrf)(const char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dpotrf)(const char *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cpotrf)(const char *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zpotrf)(const char *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_LAPACK_API void BLASFUNC(spotrs)(const char *, int *, int *, float *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dpotrs)(const char *, int *, int *, double *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cpotrs)(const char *, int *, int *, float *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zpotrs)(const char *, int *, int *, double *, int *, double *, int *, int *);
|
||||
|
||||
// Eigenvalues.
|
||||
EIGEN_LAPACK_API void BLASFUNC(ssyev)(const char *, const char *, int *, float *, int *, float *, float *, int *,
|
||||
int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dsyev)(const char *, const char *, int *, double *, int *, double *, double *, int *,
|
||||
int *);
|
||||
|
||||
// LU.
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgetrf)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgetrf)(int *, int *, float *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgetrf)(int *, int *, double *, int *, int *, int *);
|
||||
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgetrs)(const char *, int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgetrs)(const char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgetrs)(const char *, int *, int *, float *, int *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgetrs)(const char *, int *, int *, double *, int *, int *, double *, int *, int *);
|
||||
|
||||
// SVD.
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgesdd)(const char *, int *, int *, float *, int *, float *, float *, int *, float *,
|
||||
int *, float *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgesdd)(const char *, int *, int *, double *, int *, double *, double *, int *, double *,
|
||||
int *, double *, int *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgesdd)(const char *, int *, int *, float *, int *, float *, float *, int *, float *,
|
||||
int *, float *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgesdd)(const char *, int *, int *, double *, int *, double *, double *, int *, double *,
|
||||
int *, double *, int *, double *, int *, int *);
|
||||
|
||||
EIGEN_LAPACK_API void BLASFUNC(sgesvd)(const char *, const char *, int *, int *, float *, int *, float *, float *,
|
||||
int *, float *, int *, float *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(dgesvd)(const char *, const char *, int *, int *, double *, int *, double *, double *,
|
||||
int *, double *, int *, double *, int *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(cgesvd)(const char *, const char *, int *, int *, float *, int *, float *, float *,
|
||||
int *, float *, int *, float *, int *, float *, int *);
|
||||
EIGEN_LAPACK_API void BLASFUNC(zgesvd)(const char *, const char *, int *, int *, double *, int *, double *, double *,
|
||||
int *, double *, int *, double *, int *, double *, int *);
|
||||
|
||||
// Time.
|
||||
EIGEN_LAPACK_API float BLASFUNC(second)();
|
||||
EIGEN_LAPACK_API double BLASFUNC(dsecnd)();
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -40,7 +40,7 @@ EIGEN_LAPACK_FUNC(getrf)(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, in
|
||||
// A * X = B or A' * X = B
|
||||
// with a general N-by-N matrix A using the LU factorization computed by GETRF
|
||||
EIGEN_LAPACK_FUNC(getrs)
|
||||
(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info) {
|
||||
(const char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info) {
|
||||
*info = 0;
|
||||
if (OP(*trans) == INVALID)
|
||||
*info = -1;
|
||||
|
||||
@@ -15,6 +15,8 @@
|
||||
#include <ctime>
|
||||
#endif
|
||||
|
||||
#include "lapack.h"
|
||||
|
||||
extern "C" {
|
||||
float second_();
|
||||
}
|
||||
|
||||
@@ -18,8 +18,9 @@
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
|
||||
EIGEN_LAPACK_FUNC(gesdd)
|
||||
(char *jobz, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt,
|
||||
Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/, int *info) {
|
||||
(const char *jobz, int *m, int *n, RealScalar *ra, int *lda, RealScalar *s, RealScalar *ru, int *ldu, RealScalar *rvt,
|
||||
int *ldvt, RealScalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/,
|
||||
int *info) {
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork == -1;
|
||||
int diag_size = (std::min)(*m, *n);
|
||||
@@ -53,6 +54,10 @@ EIGEN_LAPACK_FUNC(gesdd)
|
||||
|
||||
if (*n == 0 || *m == 0) return;
|
||||
|
||||
Scalar *a = reinterpret_cast<Scalar *>(ra);
|
||||
Scalar *u = reinterpret_cast<Scalar *>(ru);
|
||||
Scalar *vt = reinterpret_cast<Scalar *>(rvt);
|
||||
|
||||
PlainMatrixType mat(*m, *n);
|
||||
mat = matrix(a, *m, *n, *lda);
|
||||
|
||||
@@ -84,8 +89,9 @@ EIGEN_LAPACK_FUNC(gesdd)
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
|
||||
EIGEN_LAPACK_FUNC(gesvd)
|
||||
(char *jobu, char *jobv, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt,
|
||||
Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info) {
|
||||
(const char *jobu, const char *jobv, int *m, int *n, RealScalar *ra, int *lda, RealScalar *s, RealScalar *ru, int *ldu,
|
||||
RealScalar *rvt, int *ldvt, RealScalar * /*work*/, int *lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info) {
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork == -1;
|
||||
int diag_size = (std::min)(*m, *n);
|
||||
@@ -118,6 +124,10 @@ EIGEN_LAPACK_FUNC(gesvd)
|
||||
|
||||
if (*n == 0 || *m == 0) return;
|
||||
|
||||
Scalar *a = reinterpret_cast<Scalar *>(ra);
|
||||
Scalar *u = reinterpret_cast<Scalar *>(ru);
|
||||
Scalar *vt = reinterpret_cast<Scalar *>(rvt);
|
||||
|
||||
PlainMatrixType mat(*m, *n);
|
||||
mat = matrix(a, *m, *n, *lda);
|
||||
|
||||
|
||||
@@ -257,6 +257,7 @@ ei_add_test(eigensolver_selfadjoint)
|
||||
ei_add_test(eigensolver_generic)
|
||||
ei_add_test(eigensolver_complex)
|
||||
ei_add_test(real_qz)
|
||||
ei_add_test(complex_qz)
|
||||
ei_add_test(eigensolver_generalized_real)
|
||||
ei_add_test(jacobi)
|
||||
ei_add_test(jacobisvd)
|
||||
|
||||
86
test/complex_qz.cpp
Normal file
86
test/complex_qz.cpp
Normal file
@@ -0,0 +1,86 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 The Eigen Authors
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define EIGEN_RUNTIME_NO_MALLOC
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
/* this test covers the following files:
|
||||
ComplexQZ.h
|
||||
*/
|
||||
|
||||
template <typename MatrixType>
|
||||
void generate_random_matrix_pair(const Index dim, MatrixType& A, MatrixType& B) {
|
||||
A.resize(dim, dim);
|
||||
B.resize(dim, dim);
|
||||
A.setRandom();
|
||||
B.setRandom();
|
||||
// Set each row of B with a probability of 10% to 0
|
||||
for (int i = 0; i < dim; i++) {
|
||||
if (internal::random<int>(0, 10) == 0) B.row(i).setZero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
void complex_qz(const MatrixType& A, const MatrixType& B) {
|
||||
using std::abs;
|
||||
const Index dim = A.rows();
|
||||
ComplexQZ<MatrixType> qz(A, B);
|
||||
VERIFY_IS_EQUAL(qz.info(), Success);
|
||||
auto T = qz.matrixT(), S = qz.matrixS();
|
||||
bool is_all_zero_T = true, is_all_zero_S = true;
|
||||
using RealScalar = typename MatrixType::RealScalar;
|
||||
RealScalar tol = dim * 10 * NumTraits<RealScalar>::epsilon();
|
||||
for (Index j = 0; j < dim; j++) {
|
||||
for (Index i = j + 1; i < dim; i++) {
|
||||
if (std::abs(T(i, j)) > tol) {
|
||||
std::cerr << std::abs(T(i, j)) << std::endl;
|
||||
is_all_zero_T = false;
|
||||
}
|
||||
if (std::abs(S(i, j)) > tol) {
|
||||
std::cerr << std::abs(S(i, j)) << std::endl;
|
||||
is_all_zero_S = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
VERIFY_IS_EQUAL(is_all_zero_T, true);
|
||||
VERIFY_IS_EQUAL(is_all_zero_S, true);
|
||||
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A);
|
||||
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B);
|
||||
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim));
|
||||
VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim));
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(complex_qz) {
|
||||
// const Index dim1 = 15;
|
||||
// const Index dim2 = 80;
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
// Check for very small, fixed-sized double- and float complex matrices
|
||||
Eigen::Matrix2cd A_2x2, B_2x2;
|
||||
A_2x2.setRandom();
|
||||
B_2x2.setRandom();
|
||||
B_2x2.row(1).setZero();
|
||||
Eigen::Matrix3cf A_3x3, B_3x3;
|
||||
A_3x3.setRandom();
|
||||
B_3x3.setRandom();
|
||||
B_3x3.col(i % 3).setRandom();
|
||||
// Test for small float complex matrices
|
||||
Eigen::MatrixXcf A_float, B_float;
|
||||
const Index dim1 = internal::random<Index>(15, 80), dim2 = internal::random<Index>(15, 80);
|
||||
generate_random_matrix_pair(dim1, A_float, B_float);
|
||||
// Test for a bit larger double complex matrices
|
||||
Eigen::MatrixXcd A_double, B_double;
|
||||
generate_random_matrix_pair(dim2, A_double, B_double);
|
||||
CALL_SUBTEST_1(complex_qz(A_2x2, B_2x2));
|
||||
CALL_SUBTEST_2(complex_qz(A_3x3, B_3x3));
|
||||
CALL_SUBTEST_3(complex_qz(A_float, B_float));
|
||||
CALL_SUBTEST_4(complex_qz(A_double, B_double));
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user