0
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2026-01-18 17:31:19 +01:00

Revert "Update SVD Module to allow specifying computation options with a...

This commit is contained in:
Rasmus Munk Larsen
2021-11-30 18:45:54 +00:00
committed by David Tellenbach
parent 4dd126c630
commit 085c2fc5d5
23 changed files with 634 additions and 764 deletions

View File

@@ -38,6 +38,8 @@ void bench(int id, int rows, int size = Size)
A = A*A.adjoint();
BenchTimer t_llt, t_ldlt, t_lu, t_fplu, t_qr, t_cpqr, t_cod, t_fpqr, t_jsvd, t_bdcsvd;
int svd_opt = ComputeThinU|ComputeThinV;
int tries = 5;
int rep = 1000/size;
if(rep==0) rep = 1;
@@ -51,8 +53,8 @@ void bench(int id, int rows, int size = Size)
ColPivHouseholderQR<Mat> cpqr(A.rows(),A.cols());
CompleteOrthogonalDecomposition<Mat> cod(A.rows(),A.cols());
FullPivHouseholderQR<Mat> fpqr(A.rows(),A.cols());
JacobiSVD<MatDyn, ComputeThinU|ComputeThinV> jsvd(A.rows(),A.cols());
BDCSVD<MatDyn, ComputeThinU|ComputeThinV> bdcsvd(A.rows(),A.cols());
JacobiSVD<MatDyn> jsvd(A.rows(),A.cols());
BDCSVD<MatDyn> bdcsvd(A.rows(),A.cols());
BENCH(t_llt, tries, rep, compute_norm_equation(llt,A));
BENCH(t_ldlt, tries, rep, compute_norm_equation(ldlt,A));
@@ -65,9 +67,9 @@ void bench(int id, int rows, int size = Size)
if(size*rows<=10000000)
BENCH(t_fpqr, tries, rep, compute(fpqr,A));
if(size<500) // JacobiSVD is really too slow for too large matrices
BENCH(t_jsvd, tries, rep, jsvd.compute(A));
BENCH(t_jsvd, tries, rep, jsvd.compute(A,svd_opt));
// if(size*rows<=20000000)
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A));
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A,svd_opt));
results["LLT"][id] = t_llt.best();
results["LDLT"][id] = t_ldlt.best();